1001 害死人不偿命的(3n+1)猜想

卡拉兹(Callatz)猜想:

对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 ( 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (,以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?

输入格式:

每个测试输入包含 1 个测试用例,即给出正整数 n 的值。

输出格式:

输出从 n 计算到 1 需要的步数。

输入样例:

3

输出样例:

5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#include <iostream>
using namespace std;
 
int main()
{
    int n, sum = 0;
    cin >> n;
     
    while(n != 1)
    {
        if(n % 2 == 0) {
            n = n / 2;
        }
        else {
            n = (3 * n + 1) / 2;
        }
        sum ++;
    }
     
    cout << sum << endl;
     
    return 0;
}

  

posted @   青衫客36  阅读(120)  评论(0编辑  收藏  举报
努力加载评论中...
点击右上角即可分享
微信分享提示