Tree - Rooted Trees

Rooted Trees

A graph G = (VE) is a data structure where V is a finite set of vertices and E is a binary relation on Vrepresented by a set of edges. Fig. 1 illustrates an example of a graph (or graphs).


Fig. 1

A free tree is a connnected, acyclic, undirected graph. A rooted tree is a free tree in which one of the vertices is distinguished from the others. A vertex of a rooted tree is called "node."

Your task is to write a program which reports the following information for each node u of a given rooted tree T:

  • node ID of u
  • parent of u
  • depth of u
  • node type (root, internal node or leaf)
  • a list of chidlren of u

If the last edge on the path from the root r of a tree T to a node x is (px), then p is the parent of x, and xis a child of p. The root is the only node in T with no parent.

A node with no children is an external node or leaf. A nonleaf node is an internal node

The number of children of a node x in a rooted tree T is called the degree of x.

The length of the path from the root r to a node x is the depth of x in T.

Here, the given tree consists of n nodes and evey node has a unique ID from 0 to n-1.

Fig. 2 shows an example of rooted trees where ID of each node is indicated by a number in a circle (node). The example corresponds to the first sample input.


Fig. 2

Input

The first line of the input includes an integer n, the number of nodes of the tree.

In the next n lines, the information of each node u is given in the following format:

id k cc2 ... ck

where id is the node ID of uk is the degree of uc1 ... ck are node IDs of 1st, ... kth child of u. If the node does not have a child, the k is 0.

Output

Print the information of each node in the following format ordered by IDs:

node id: parent = p , depth = dtype, [c1...ck]

p is ID of its parent. If the node does not have a parent, print -1.

d is depth of the node.

type is a type of nodes represented by a string (root, internal node or leaf). If the root can be considered as a leaf or an internal node, print root.

c1...ck is the list of children as a ordered tree.

Please follow the format presented in a sample output below.

Constraints

  • 1 ≤ n ≤ 100000

Sample Input 1

13
0 3 1 4 10
1 2 2 3
2 0
3 0
4 3 5 6 7
5 0
6 0
7 2 8 9
8 0
9 0
10 2 11 12
11 0
12 0

Sample Output 1

node 0: parent = -1, depth = 0, root, [1, 4, 10]
node 1: parent = 0, depth = 1, internal node, [2, 3]
node 2: parent = 1, depth = 2, leaf, []
node 3: parent = 1, depth = 2, leaf, []
node 4: parent = 0, depth = 1, internal node, [5, 6, 7]
node 5: parent = 4, depth = 2, leaf, []
node 6: parent = 4, depth = 2, leaf, []
node 7: parent = 4, depth = 2, internal node, [8, 9]
node 8: parent = 7, depth = 3, leaf, []
node 9: parent = 7, depth = 3, leaf, []
node 10: parent = 0, depth = 1, internal node, [11, 12]
node 11: parent = 10, depth = 2, leaf, []
node 12: parent = 10, depth = 2, leaf, []

Sample Input 2

4
1 3 3 2 0
0 0
3 0
2 0

Sample Output 2

node 0: parent = 1, depth = 1, leaf, []
node 1: parent = -1, depth = 0, root, [3, 2, 0]
node 2: parent = 1, depth = 1, leaf, []
node 3: parent = 1, depth = 1, leaf, []

Note

You can use a left-child, right-sibling representation to implement a tree which has the following data:

  • the parent of u
  • the leftmost child of u
  • the immediate right sibling of u

Reference

Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The MIT Press.

 

有根树的存储, 根据数据看出不是二叉树, 故用孩子兄弟表示法存储(左孩子, 右兄弟)

利用递归求树的深度时, 若是左孩子则深度加一, 右孩子(兄弟节点)还是当前深度

 

 

#include <iostream>
using namespace std;
#define MAX 100005
#define NIL -1

struct Node {
	int parent;
	int left;
	int right;
}; 

Node T[MAX];
int n, D[MAX];

void print(int u)
{
	int i, c;
	cout << "node " << u << ": ";
	cout << "parent = " << T[u].parent << ", ";
	cout << "depth = " << D[u] << ", ";
	
	if(T[u].parent == NIL)
	{
		cout << "root, ";
	}
	else if(T[u].left == NIL)
	{
		cout << "leaf, ";
	}
	else
	{
		cout << "internal node, ";
	}
	
	cout << "[";
	
	for(i = 0, c = T[u].left; c != NIL; ++ i, c = T[c].right)
	{
		if(i)	cout << ", ";
		cout << c;
	}
	
	cout << "]" << endl;
}

// 递归求深度 
void rec(int u, int p)
{
	D[u] = p;
	if(T[u].right != NIL)
	{
		rec(T[u].right, p);
	}
	if(T[u].left != NIL)
	{
		rec(T[u].left, p + 1);
	}
}

int main()
{
	int i, j, d, v, c, l, r;
	cin >> n;
	for(i = 0; i < n; ++ i)
	{
		T[i].parent = T[i].left = T[i].right = NIL;
	}
	
	for(i = 0; i < n; ++ i)
	{
		cin >> v >> d;
		for(j = 0; j < d; ++ j)
		{
			cin >> c;
			if(j == 0)	
			{
				T[v].left = c;	// 父节点的左孩子为c 
			}
			else	
			{
				T[l].right = c;	// 当前兄弟节点为c 
			}
			l = c;	// 记录前一个兄弟节点 
			T[c].parent = v;
		}
	}
	for(i = 0; i < n; ++ i)
	{
		if(T[i].parent == NIL)
		{
			r = i;
		}
	}
	
	rec(r, 0);
	
	for(i = 0; i < n; ++ i)
	{
		print(i);
	}
	
	return 0;
}

/*
13
0 3 1 4 10
1 2 2 3
2 0
3 0
4 3 5 6 7
5 0
6 0
7 2 8 9
8 0
9 0
10 2 11 12
11 0
12 0
*/

  

posted @ 2019-04-30 16:09  青衫客36  阅读(745)  评论(0编辑  收藏  举报