ObjectArx圆角功能代码
用了几次cad的圆角功能,想试着自己写一个。
目前已经基本可用,但只能直线变圆角,圆弧变圆角需要另一套算法,就不写了。
//直线变圆角
bool PhdUtility::LineFillet(const AcDbObjectId& idLine1, const AcDbObjectId& idLine2, double dRadius, AcDbObjectId& idArc)
{
#pragma region 得到圆心
//得到角平分线向量
AcGeVector2d midVec;
PhdGeometry::GetMidVectorOfLines(idLine1, idLine2, midVec);
double dVecAngle = midVec.angle();
double dAngle = 0;
PhdGeometry::GetAngleOfLines(idLine1, idLine2, dAngle);
double dDist = dRadius / std::sin(dAngle/2);
AcGePoint3d ptInter;
PhdGeometry::GetIntersectPoint(idLine1, idLine2, ptInter);
AcGePoint3d ptCenter = PhdGeometry::PolarPoint(ptInter, dVecAngle, dDist);
#pragma endregion
#pragma region 得到垂足
AcGePoint3d ptNew1 = PhdGeometry::GetClossedPoint(idLine1, ptCenter);
AcGePoint3d ptNew2 = PhdGeometry::GetClossedPoint(idLine2, ptCenter);
#pragma endregion
#pragma region 设置直线点
AcDbObjectPointer<AcDbLine> pLine1(idLine1,AcDb::kForWrite);
if (Acad::eOk != pLine1.openStatus())
return false;
AcDbObjectPointer<AcDbLine> pLine2(idLine2, AcDb::kForWrite);
if (Acad::eOk != pLine2.openStatus())
return false;
if (ptInter.distanceTo(pLine1->startPoint()) < ptInter.distanceTo(pLine1->endPoint()))
{
pLine1->setStartPoint(ptNew1);
}
else
{
pLine1->setEndPoint(ptNew1);
}
if (ptInter.distanceTo(pLine2->startPoint()) < ptInter.distanceTo(pLine2->endPoint()))
{
pLine2->setStartPoint(ptNew2);
}
else
{
pLine2->setEndPoint(ptNew2);
}
#pragma endregion
#pragma region 绘制圆弧
AcDbArc* pArc = NULL;
PhdEntity::CreateArc3(ptCenter, ptNew1, ptNew2,pArc);
ArxDbgUtils::addToCurrentSpaceAndClose(pArc);
idArc = pArc->objectId();
#pragma endregion
return true;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
内部函数
// Summary: 得到两条直线的角平分线向量
bool PhdGeometry::GetMidVectorOfLines(const AcDbObjectId& idLine1, const AcDbObjectId& idLine2, AcGeVector2d& midVector)
{
AcDbObjectPointer<AcDbLine> pLine1(idLine1,AcDb::kForRead);
if (Acad::eOk != pLine1.openStatus())
return false;
AcDbObjectPointer<AcDbLine> pLine2(idLine2, AcDb::kForRead);
if (Acad::eOk != pLine2.openStatus())
return false;
AcGePoint3d ptInter;
PhdGeometry::GetIntersectPoint(pLine1, pLine2, ptInter);
AcGePoint3d ptEnd1, ptEnd2;
if (!ptInter.isEqualTo(pLine1->startPoint()))
{
ptEnd1 = pLine1->startPoint();
}
else
{
ptEnd1 = pLine1->endPoint();
}
if (!ptInter.isEqualTo(pLine2->startPoint()))
{
ptEnd2 = pLine2->startPoint();
}
else
{
ptEnd2 = pLine2->endPoint();
}
AcGeVector2d vec1 = ptEnd1.convert2d(AcGePlane::kXYPlane) - ptInter.convert2d(AcGePlane::kXYPlane);
AcGeVector2d vec2 = ptEnd2.convert2d(AcGePlane::kXYPlane) - ptInter.convert2d(AcGePlane::kXYPlane);
midVector = vec1.normal() + vec2.normal();
return true;
}
// Summary: 得到两条直线的夹角
bool PhdGeometry::GetAngleOfLines(const AcDbObjectId& idLine1, const AcDbObjectId& idLine2, double& dAngle)
{
AcDbObjectPointer<AcDbLine> pLine1(idLine1,AcDb::kForRead);
if (Acad::eOk != pLine1.openStatus())
return false;
AcDbObjectPointer<AcDbLine> pLine2(idLine2, AcDb::kForRead);
if (Acad::eOk != pLine2.openStatus())
return false;
AcGePoint3d ptInter;
PhdGeometry::GetIntersectPoint(pLine1, pLine2, ptInter);
AcGePoint3d ptEnd1, ptEnd2;
if (!ptInter.isEqualTo(pLine1->startPoint()))
{
ptEnd1 = pLine1->startPoint();
}
else
{
ptEnd1 = pLine1->endPoint();
}
if (!ptInter.isEqualTo(pLine2->startPoint()))
{
ptEnd2 = pLine2->startPoint();
}
else
{
ptEnd2 = pLine2->endPoint();
}
AcGeVector2d vec1 = ptEnd1.convert2d(AcGePlane::kXYPlane) - ptInter.convert2d(AcGePlane::kXYPlane);
AcGeVector2d vec2 = ptEnd2.convert2d(AcGePlane::kXYPlane) - ptInter.convert2d(AcGePlane::kXYPlane);
dAngle = vec1.angleTo(vec2);
return true;
}
// Summary: 得到交点坐标
bool PhdGeometry::GetIntersectPoint(const AcDbObjectId& idLine1, const AcDbObjectId& idLine2, AcGePoint3d& ptIntersect)
{
AcDbObjectPointer<AcDbLine> pLine1(idLine1,AcDb::kForRead);
if (Acad::eOk != pLine1.openStatus())
return false;
AcDbObjectPointer<AcDbLine> pLine2(idLine2, AcDb::kForRead);
if (Acad::eOk != pLine2.openStatus())
return false;
AcGeLine2d geLine1(pLine1->startPoint().convert2d(AcGePlane::kXYPlane), pLine1->endPoint().convert2d(AcGePlane::kXYPlane));
AcGeLine2d geLine2(pLine2->startPoint().convert2d(AcGePlane::kXYPlane), pLine2->endPoint().convert2d(AcGePlane::kXYPlane));
AcGePoint2d pt2d;
bool bRet = geLine1.intersectWith(geLine2, pt2d);
if (!bRet)
return false;
ptIntersect = AcGePoint3d(pt2d.x, pt2d.y, 0);
return true;
}
// Summary: 极坐标求点
AcGePoint3d PhdGeometry::PolarPoint(const AcGePoint3d& pt, double angle, double distance)
{
ads_point ptForm, ptTo;
ptForm[X] = pt.x;
ptForm[Y] = pt.y;
ptForm[Z] = pt.z;
acutPolar(ptForm, angle, distance, ptTo);
return asPnt3d(ptTo);
}
// Summary: 得到直线上距离该点最近的点
AcGePoint3d PhdGeometry::GetClossedPoint(const AcDbObjectId& idCurve, const AcGePoint3d& pt)
{
AcDbObjectPointer<AcDbCurve> pCurve(idCurve,AcDb::kForRead);
if (Acad::eOk != pCurve.openStatus())
return AcGePoint3d::kOrigin;
AcGePoint3d ptOnCurve;
pCurve->getClosestPointTo(pt, ptOnCurve);
return ptOnCurve;
}
// Summary: 圆心和起始点和终止点绘制圆弧(不知道谁是起始点和终止点)
bool PhdEntity::CreateArc3(const AcGePoint3d& ptCenter, const AcGePoint3d& pt1, const AcGePoint3d& pt2, AcDbArc*& pArc)
{
// 计算半径;
double radius = ptCenter.distanceTo(pt1);
// 计算起始和终止角度;
AcGeVector2d vecStart(pt1.x - ptCenter.x, pt1.y - ptCenter.y);
AcGeVector2d vecEnd(pt2.x - ptCenter.x, pt2.y - ptCenter.y);
double startAngle = vecStart.angle();
double endAngle = vecEnd.angle();
double dBulge = PhdGeometry::GetArcBulge(startAngle, endAngle);
if (0 > dBulge)
{
vecStart = AcGeVector2d(pt2.x - ptCenter.x, pt2.y - ptCenter.y);
vecEnd = AcGeVector2d(pt1.x - ptCenter.x, pt1.y - ptCenter.y);
startAngle = vecStart.angle();
endAngle = vecEnd.angle();
dBulge = PhdGeometry::GetArcBulge(startAngle, endAngle);
if (0 > dBulge)
return false;
}
pArc = new AcDbArc(ptCenter, radius, startAngle, endAngle);
return true;
}
//得到圆弧凸度
double PhdUtility::GetArcBulge(double dAngleStart, double dAngleEnd)
{
double dAlfa = dAngleEnd - dAngleStart;
if (dAlfa < 0.0)//如果终点角度小于起点角度;
{
dAlfa = 2 * (atan(1.0) * 4) + dAlfa;
}
double dBulge = 0.0;
dBulge = tan((dAlfa) / 4.0);
return dBulge;
}
————————————————
版权声明:本文为CSDN博主「A彡安静氵」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/phd17621680432/article/details/91848419