SPFA算法之二
//当题目中并没有明确的唯一源点,就需要添加超级源点,它到各顶点都可达,
//因为如果图是非连通的,那么有些顶点将一直得不到检查,
//解决方法就是在初始队列时,把所有的顶点都压入队列里
#include <iostream> //poj 2983 差分约束系统,使用并查集
#include <queue>
using namespace std;
const int MAX = 500000;
const int INF = 1000000000;
const int N = 2000;
struct Node
{
int v;
int cost;
int next;
};
Node node[MAX];
int cnt[N];
int adj[N];
bool in_q[N];
int d[N];
int size;
int n, m;
void add_edge(int u, int v, int cost)
{
node[size].v = v;
node[size].cost = cost;
node[size].next = adj[u];
adj[u] = size++;
}
bool spfa()
{
queue<int> Q;
memset(cnt, 0, sizeof(cnt));
memset(in_q, false, sizeof(in_q));
for (int i = 0; i <= n; i++)
d[i] = INF;
d[0] = 0;
int u,v,w;
in_q[0] = true;
for(int i=1;i<=n;++i)
Q.push(i);
while (!Q.empty())
{
u = Q.front();
Q.pop();
in_q[u] = false;
for (int i = adj[u]; i != -1; i = node[i].next)
{
v = node[i].v;
w = node[i].cost;
if (d[v] < d[u]+w)
{
d[v] = d[u] + w;
if (!in_q[v])
{
in_q[v] = true;
Q.push(v);
if (++cnt[v] >= n) return false;
}
}
}
}
return true;
}
int main()
{
char c;
int a, b ,w;
while (scanf("%d%d", &n, &m) != EOF)
{
size = 0;
for (int i = 0; i <= n; i++)
adj[i] = -1;
for (int i = 0; i < m; i++)
{
getchar();
scanf("%c", &c);
if (c == 'P')
{
scanf("%d%d%d", &a, &b, &w);
add_edge(b, a, w);
add_edge(a, b, -w);
}
else if (c == 'V')
{
scanf("%d%d", &a, &b);
add_edge(b, a, 1);
}
}
if (spfa())
printf("Reliable\n");
else
printf("Unreliable\n");
}
return 0;
}