win7下idea远程连接hadoop,运行wordCount

1.将hadoop-2.6.1.tar.gz解压到本地

配置环境变量

HADOOP_HOME 

E:\kaifa\hadoop-2.6.1\hadoop-2.6.1

HADOOP_BIN_PATH

%HADOOP_HOME%\bin

HADOOP_PREFIX

%HADOOP_HOME%

配置path

E:\kaifa\jdk1.7.0_21\bin;%HADOOP_HOME%\bin;%HADOOP_HOME%\sbin;

 

2.用idea新建一个maven项目

导入hadoop依赖包

File>Project Structure>Project Settings>Libraries,点+号然后选择Java,然后选择解压出来的hadoop-2.6.1文件夹下share\hadoop\下的jar包

 

 

 

 

pom.xml配置

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
 
    <groupId>com.hadoop261</groupId>
    <artifactId>myhadoop</artifactId>
    <version>1.0-SNAPSHOT</version>
 
    <dependencies>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>2.6.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-jobclient</artifactId>
            <version>2.6.1</version>
        </dependency>
        <dependency>
            <groupId>commons-cli</groupId>
            <artifactId>commons-cli</artifactId>
            <version>1.2</version>
        </dependency>
    </dependencies>
 
    <build>
        <finalName>${project.artifactId}</finalName>
    </build>

 



WcMapper.java

package hadoop.test;


import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
import java.util.StringTokenizer;

public class WcMapper extends Mapper<LongWritable,Text,Text,IntWritable>{
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
// IntWritable one=new IntWritable(1);
String line=value.toString();
StringTokenizer st=new StringTokenizer(line);
//StringTokenizer "kongge"
while (st.hasMoreTokens()){
String word= st.nextToken();
context.write(new Text(word),new IntWritable(1)); //output
}
}
}

 


McReducer.java

package hadoop.test;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;

/**
* Created by iespark on 2/26/16.
*/
public class McReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
@Override
protected void reduce(Text key, Iterable<IntWritable> iterable, Context context) throws IOException, InterruptedException {
int sum=0;
for (IntWritable i:iterable){
sum=sum+i.get();
}
context.write(key,new IntWritable(sum));
}
}

 


JobRun.java

package hadoop.test;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

/**
* Created by iespark on 2/26/16.
*/
public class JobRun {
public static void main(String[] args){
Configuration conf=new Configuration();
try{
Job job = Job.getInstance(conf, "word count");
onfiguration conf, String jobName
job.setJarByClass(JobRun.class);
job.setMapperClass(WcMapper.class);
job.setReducerClass(McReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//解决No job jar file set. User classes may not be found. See Job or Job#setJar(String)报错的问题
job.setJar("E:\\idea2017workspace\\myhadoop\\out\\artifacts\\myhadoop_jar\\myhadoop.jar");

FileInputFormat.addInputPath(job,new Path(args[0]));
FileSystem fs= FileSystem.get(conf);
Path op1=new Path(args[1]);
if(fs.exists(op1)){
fs.delete(op1, true);
System.out.println("存在此输出路径,已删除!!!");
}
FileOutputFormat.setOutputPath(job,op1);
System.exit(job.waitForCompletion(true)?0:1);
}catch (Exception e){
e.printStackTrace();
}
}
}

 

3.设置jar包的生成位置

 

 

注意最下面的Main Class别忘记选择

然后把这个路径放在JobRun.jar中的

job.setJar("E:\\idea2017workspace\\myhadoop\\out\\artifacts\\myhadoop_jar\\myhadoop.jar");

 


3.在sources文件夹中新增core-site.xml和log4j.properties文件

 

 

core-site.xml 配置内容和你的hadoop集群的配置一样

 

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!-- Put site-specific property overrides in this file. -->

<configuration>
<!--配置namenode的地址-->

<property>
<name>fs.defaultFS</name>
<value>hdfs://10.102.19.229:9000</value>
</property>
<!-- 指定hadoop运行时产生文件的存储目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>file:///data/hadoop/data/tmp</value>
</property>
</configuration>

 


log4j.properties文件可以将hadoop-2.6.1下的hadoop-2.6.1\etc\hadoop中的log4j.properties复制过来,不用修改!

4.配置运行参数

我们可以直接在JobRun.java右键运行,但是还少两个参数,一个是输入路径,一个是输出路径,下面Program arguments中的第一个是输入路径,第二个是输出路径。

注意:1.这两个路径中间要用空格隔开!

    2.这两个路径都是你hadoop上hdfs文件系统中的路径,不是你win7本地的路径!

    3.输入路径的a.txt是你要处理的文件,需要自己新建:hadoop fs -mkdir /input    hadoop fs -put ./a.txt /input

我的a.txt的内容是:

speak good cloud speek good good cloud speak english
EOF

运行结果就是统计每个单词出现了几次

 

 


5.运行

看到下面的输出,我们就成功远程到了linux上的hadoop并执行了wordCount程序!

 

 

我们到linux控制台查看运行结果:

可以看到有了output文件夹(input是我们自己建的)

 

 

 

 

我们可以用

hadoop fs -ls /output

继续查看,看到有两个文件,part-r-00000就是运行的结果!

 

 

 


我们用

hadoop fs -cat /output/part-r-00000
查看执行结果

 

温馨提醒:为了以防空指针等一些莫名其妙的的错误在此处需要把你的hadoop的配置文件里面的core-site.xml、hdfs-site.xml和log4j.properties复制过来放在你的 src目录下。然后在开始运行你的程序了。在此处我们准备做测试的文件放在集群根目录下的data下。所需需要在你的hdfs文件系统的根目录创建data文件夹,并上传你要的测试文件。

org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.AccessControlException): Permission denied: user=Administrator, access=WRITE, inode="/":root:supergroup:drwxr-xr报错

 

至此,我们成功在win7下远程调用linux的hadoop-2.6.1运行了wordCount程序!
---------------------
作者:龙丿一
来源:CSDN
原文:https://blog.csdn.net/wuyanshen2012/article/details/77482892
版权声明:本文为博主原创文章,转载请附上博文链接!

posted @ 2018-11-22 11:39  MJBrian  阅读(633)  评论(0编辑  收藏  举报