AIM Tech Round 5C. Rectangles 思维

C. Rectangles
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given nn rectangles on a plane with coordinates of their bottom left and upper right points. Some (n1)(n−1) of the given nn rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary.

Find any point with integer coordinates that belongs to at least (n1)(n−1) given rectangles.

Input

The first line contains a single integer nn (2n1326742≤n≤132674) — the number of given rectangles.

Each the next nn lines contains four integers x1x1, y1y1, x2x2 and y2y2 (109x1<x2109−109≤x1<x2≤109, 109y1<y2109−109≤y1<y2≤109) — the coordinates of the bottom left and upper right corners of a rectangle.

Output

Print two integers xx and yy — the coordinates of any point that belongs to at least (n1)(n−1) given rectangles.

Examples
input
Copy
3
0 0 1 1
1 1 2 2
3 0 4 1
output
Copy
1 1
input
Copy
3
0 0 1 1
0 1 1 2
1 0 2 1
output
Copy
1 1
input
Copy
4
0 0 5 5
0 0 4 4
1 1 4 4
1 1 4 4
output
Copy
1 1
input
Copy
5
0 0 10 8
1 2 6 7
2 3 5 6
3 4 4 5
8 1 9 2
output
Copy
3 4
Note

The picture below shows the rectangles in the first and second samples. The possible answers are highlighted.

 

题意:给出n个矩形,找一个点至少同时在n-1个矩形内。

思路:我们分别对每条对角线求前缀交后缀交,则若在每个条对角线左右两边的的前缀与后缀取交后还存在交点,即为解。

代码:

 1 #include"bits/stdc++.h"
 2 
 3 #define db double
 4 #define ll long long
 5 #define vl vector<ll>
 6 #define ci(x) scanf("%d",&x)
 7 #define cd(x) scanf("%lf",&x)
 8 #define cl(x) scanf("%lld",&x)
 9 #define pi(x) printf("%d\n",x)
10 #define pd(x) printf("%f\n",x)
11 #define pl(x) printf("%lld\n",x)
12 #define rep(i, n) for(int i=0;i<n;i++)
13 using namespace std;
14 const int N = 1e6 + 5;
15 const int mod = 1e9 + 7;
16 const int MOD = 998244353;
17 const db  PI = acos(-1.0);
18 const db  eps = 1e-10;
19 const ll  INF = 0x3fffffffffffffff;
20 int n;
21 struct P{
22     int d,l,u,r;
23     inline P operator | (P a){
24         return (P){max(a.d,d),max(a.l,l),min(a.u,u),min(a.r,r)};
25     }
26 }a[N],pre[N],suf[N];
27 int main(){
28     ci(n);
29     for(int i=1;i<=n;i++){
30        ci(a[i].d),ci(a[i].l),ci(a[i].u),ci(a[i].r);
31     }
32     pre[0]=suf[n+1]={-mod,-mod,mod,mod};//初始化
33     for(int i=1;i<=n;i++){
34         pre[i]=pre[i-1]|a[i];//前缀
35     }
36     for(int i=n;i>=1;i--){
37         suf[i]=suf[i+1]|a[i];//后缀
38     }
39     for(int i=1;i<=n;i++){
40         P tmp=pre[i-1]|suf[i+1];//取交
41         if(tmp.d<=tmp.u&&tmp.l<=tmp.r) return !printf("%d %d\n",tmp.d,tmp.l);
42     }
43     return 0;
44 }

 

 

 

posted @ 2018-08-28 13:01  thges  阅读(211)  评论(0编辑  收藏  举报