单调栈 单调队列
单调栈模版: //求l,r内最大矩形面积: //h[i]:[L[i],R[i]) 左开右闭,h[i]为区间的最小值 //L[i]:对于h[i]将栈内大于它的数都去掉,这些数不可能做为左端点,若栈为空则L[i]=0,否则L[i]=s.top()+1; //R[i]:对于h[i]将栈内大于它都数都去掉,这些数不可能做为右端点,若栈为空则R[i]=n,否则R[i]=s.top(); #include "stack" int h[N]; int L[N],R[N]; int main() { int n; while(scanf("%d",&n)==1&&n!=0) { for(int i=0;i<n;i++) ci(h[i]); stack<int> s; for(int i=0;i<n;i++){ while(s.size()>0&&h[i]<=h[s.top()]) s.pop(); if(s.empty()==1) L[i]=0; else L[i]=s.top()+1; s.push(i); } while(!s.empty()) s.pop(); for(int i=n-1;i>=0;i--){ while(s.size()>0&&h[i]<=h[s.top()]) s.pop(); if(s.empty()==1) R[i]=n; else R[i]=s.top(); s.push(i); } ll res=0; for(int i=0;i<n;i++) res=max(res,1ll*h[i]*(R[i]-L[i])); pl(res); } return 0; } //单调队列: //(求连续区间极值):求a[i~i+k-1]的 min 与 max. #include "deque" int main() { int n,k; deque<int> q; while(scanf("%d%d",&n,&k)==2) { if(q.size()>0) q.clear(); for(int i=0;i<n;i++) ci(a[i]); for(int i=0;i<n;i++){//get min while(q.size()>0&&a[q.back()]>=a[i]) q.pop_back(); q.push_back(i); if(i-k+1>=0){ b[i-k+1]=a[q.front()]; if(q.front()==i-k+1) q.pop_front(); } } if(q.size()>0) q.clear(); for(int i=0;i<n;i++){//get max while(q.size()>0&&a[q.back()]<=a[i]) q.pop_back(); q.push_back(i); if(i-k+1>=0){ c[i-k+1]=a[q.front()]; if(q.front()==i-k+1) q.pop_front(); } } for(int i=0;i<=n-k;i++) printf("%d%c",b[i],i==n-k?'\n':' '); for(int i=0;i<=n-k;i++) printf("%d%c",c[i],i==n-k?'\n':' '); } return 0; }