Codeforces Round #462 (Div. 2) C DP
A dragon symbolizes wisdom, power and wealth. On Lunar New Year's Day, people model a dragon with bamboo strips and clothes, raise them with rods, and hold the rods high and low to resemble a flying dragon.
A performer holding the rod low is represented by a 1, while one holding it high is represented by a 2. Thus, the line of performers can be represented by a sequence a1, a2, ..., an.
Little Tommy is among them. He would like to choose an interval [l, r] (1 ≤ l ≤ r ≤ n), then reverse al, al + 1, ..., ar so that the length of the longest non-decreasing subsequence of the new sequence is maximum.
A non-decreasing subsequence is a sequence of indices p1, p2, ..., pk, such that p1 < p2 < ... < pk and ap1 ≤ ap2 ≤ ... ≤ apk. The length of the subsequence is k.
The first line contains an integer n (1 ≤ n ≤ 2000), denoting the length of the original sequence.
The second line contains n space-separated integers, describing the original sequence a1, a2, ..., an (1 ≤ ai ≤ 2, i = 1, 2, ..., n).
Print a single integer, which means the maximum possible length of the longest non-decreasing subsequence of the new sequence.
4
1 2 1 2
4
10
1 1 2 2 2 1 1 2 2 1
9
In the first example, after reversing [2, 3], the array will become [1, 1, 2, 2], where the length of the longest non-decreasing subsequence is 4.
In the second example, after reversing [3, 7], the array will become [1, 1, 1, 1, 2, 2, 2, 2, 2, 1], where the length of the longest non-decreasing subsequence is 9.
题意:求最长不递减子序列可以选择一个区间逆转。
题解:求出1的前缀和,2的后缀和,以及区间[i,j]的最长不递增子序列。
f[i][j][0]表示区间i-j以1结尾的最长不递增子序列;
f[i][j][1]表示区间i-j以2结尾的最长不递增子序列,显然是区间i-j 2的个数;
所以转移方程为:
f[i][j][1] = f[i][j-1][1] + (a[j]==2);
f[i][j][0] = max(f[i][j-1][0], f[i][j-1][1]) + (a[j]==1);(1<=i<=n,i<=j<=n)
代码:
1 //#include"bits/stdc++.h" 2 #include <sstream> 3 #include <iomanip> 4 #include"cstdio" 5 #include"map" 6 #include"set" 7 #include"cmath" 8 #include"queue" 9 #include"vector" 10 #include"string" 11 #include"cstring" 12 #include"time.h" 13 #include"iostream" 14 #include"stdlib.h" 15 #include"algorithm" 16 #define db double 17 #define ll long long 18 #define vec vector<ll> 19 #define mt vector<vec> 20 #define ci(x) scanf("%d",&x) 21 #define cd(x) scanf("%lf",&x) 22 #define cl(x) scanf("%lld",&x) 23 #define pi(x) printf("%d\n",x) 24 #define pd(x) printf("%f\n",x) 25 #define pl(x) printf("%lld\n",x) 26 //#define rep(i, x, y) for(int i=x;i<=y;i++) 27 #define rep(i,n) for(int i=0;i<n;i++) 28 const int N = 2e3 + 5; 29 const int mod = 1e9 + 7; 30 const int MOD = mod - 1; 31 const int inf = 0x3f3f3f3f; 32 const db PI = acos(-1.0); 33 const db eps = 1e-10; 34 using namespace std; 35 int a[N]; 36 int l[N],r[N]; 37 int f[N][N][2]; 38 int main() 39 { 40 int n; 41 ci(n); 42 for(int i=1;i<=n;i++) ci(a[i]),l[i]=l[i-1]+(a[i]==1); 43 for(int i=n;i>=0;i--) r[i]=r[i+1]+(a[i]==2); 44 int ma=-1; 45 for(int i=1;i<=n;i++){ 46 for(int j=i;j<=n;j++){ 47 f[i][j][1]=f[i][j-1][1]+(a[j]==2); 48 f[i][j][0]=max(f[i][j-1][0],f[i][j-1][1])+(a[j]==1); 49 ma=max(ma,f[i][j][1]+l[i-1]+r[j+1]); 50 ma=max(ma,f[i][j][0]+l[i-1]+r[j+1]); 51 } 52 } 53 pi(ma); 54 return 0; 55 }