Codeforces Round #462 (Div. 2) C DP

C. A Twisty Movement
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

A dragon symbolizes wisdom, power and wealth. On Lunar New Year's Day, people model a dragon with bamboo strips and clothes, raise them with rods, and hold the rods high and low to resemble a flying dragon.

A performer holding the rod low is represented by a 1, while one holding it high is represented by a 2. Thus, the line of performers can be represented by a sequence a1, a2, ..., an.

Little Tommy is among them. He would like to choose an interval [l, r] (1 ≤ l ≤ r ≤ n), then reverse al, al + 1, ..., ar so that the length of the longest non-decreasing subsequence of the new sequence is maximum.

A non-decreasing subsequence is a sequence of indices p1, p2, ..., pk, such that p1 < p2 < ... < pk and ap1 ≤ ap2 ≤ ... ≤ apk. The length of the subsequence is k.

Input

The first line contains an integer n (1 ≤ n ≤ 2000), denoting the length of the original sequence.

The second line contains n space-separated integers, describing the original sequence a1, a2, ..., an (1 ≤ ai ≤ 2, i = 1, 2, ..., n).

Output

Print a single integer, which means the maximum possible length of the longest non-decreasing subsequence of the new sequence.

Examples
input
Copy
4
1 2 1 2
output
4
input
Copy
10
1 1 2 2 2 1 1 2 2 1
output
9
Note

In the first example, after reversing [2, 3], the array will become [1, 1, 2, 2], where the length of the longest non-decreasing subsequence is 4.

In the second example, after reversing [3, 7], the array will become [1, 1, 1, 1, 2, 2, 2, 2, 2, 1], where the length of the longest non-decreasing subsequence is 9.

题意:求最长不递减子序列可以选择一个区间逆转。

题解:求出1的前缀和,2的后缀和,以及区间[i,j]的最长不递增子序列。

f[i][j][0]表示区间i-j以1结尾的最长不递增子序列;

f[i][j][1]表示区间i-j以2结尾的最长不递增子序列,显然是区间i-j 2的个数;

所以转移方程为:

   f[i][j][1] = f[i][j-1][1] + (a[j]==2);
   f[i][j][0] = max(f[i][j-1][0], f[i][j-1][1]) + (a[j]==1);(1<=i<=n,i<=j<=n)

代码:

 1 //#include"bits/stdc++.h"
 2 #include <sstream>
 3 #include <iomanip>
 4 #include"cstdio"
 5 #include"map"
 6 #include"set"
 7 #include"cmath"
 8 #include"queue"
 9 #include"vector"
10 #include"string"
11 #include"cstring"
12 #include"time.h"
13 #include"iostream"
14 #include"stdlib.h"
15 #include"algorithm"
16 #define db double
17 #define ll long long
18 #define vec vector<ll>
19 #define mt  vector<vec>
20 #define ci(x) scanf("%d",&x)
21 #define cd(x) scanf("%lf",&x)
22 #define cl(x) scanf("%lld",&x)
23 #define pi(x) printf("%d\n",x)
24 #define pd(x) printf("%f\n",x)
25 #define pl(x) printf("%lld\n",x)
26 //#define rep(i, x, y) for(int i=x;i<=y;i++)
27 #define rep(i,n) for(int i=0;i<n;i++)
28 const int N   = 2e3 + 5;
29 const int mod = 1e9 + 7;
30 const int MOD = mod - 1;
31 const int inf = 0x3f3f3f3f;
32 const db  PI  = acos(-1.0);
33 const db  eps = 1e-10;
34 using namespace std;
35 int a[N];
36 int l[N],r[N];
37 int f[N][N][2];
38 int main()
39 {
40     int n;
41     ci(n);
42     for(int i=1;i<=n;i++) ci(a[i]),l[i]=l[i-1]+(a[i]==1);
43     for(int i=n;i>=0;i--) r[i]=r[i+1]+(a[i]==2);
44     int ma=-1;
45     for(int i=1;i<=n;i++){
46         for(int j=i;j<=n;j++){
47             f[i][j][1]=f[i][j-1][1]+(a[j]==2);
48             f[i][j][0]=max(f[i][j-1][0],f[i][j-1][1])+(a[j]==1);
49             ma=max(ma,f[i][j][1]+l[i-1]+r[j+1]);
50             ma=max(ma,f[i][j][0]+l[i-1]+r[j+1]);
51         }
52     }
53     pi(ma);
54     return 0;
55 }

 

posted @ 2018-03-26 14:34  thges  阅读(157)  评论(0编辑  收藏  举报