Codeforces Round #460 (Div. 2): D. Substring(DAG+DP+判环)

D. Substring
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given a graph with n nodes and m directed edges. One lowercase letter is assigned to each node. We define a path's value as the number of the most frequently occurring letter. For example, if letters on a path are "abaca", then the value of that path is 3. Your task is find a path whose value is the largest.

Input

The first line contains two positive integers n, m (1 ≤ n, m ≤ 300 000), denoting that the graph has n nodes and m directed edges.

The second line contains a string s with only lowercase English letters. The i-th character is the letter assigned to the i-th node.

Then m lines follow. Each line contains two integers x, y (1 ≤ x, y ≤ n), describing a directed edge from x to y. Note that x can be equal to y and there can be multiple edges between x and y. Also the graph can be not connected.

Output

Output a single line with a single integer denoting the largest value. If the value can be arbitrarily large, output -1 instead.

Examples
input
5 4
abaca
1 2
1 3
3 4
4 5
output
3
input
6 6
xzyabc
1 2
3 1
2 3
5 4
4 3
6 4
output
-1
input
10 14
xzyzyzyzqx
1 2
2 4
3 5
4 5
2 6
6 8
6 5
2 10
3 9
10 9
4 6
1 10
2 8
3 7
output
4
Note

In the first sample, the path with largest value is 1 → 3 → 4 → 5. The value is 3 because the letter 'a' appears 3 times.

 

题意:给一个由字母代替节点的有向图,一条路径的值为出现次数最多的字母出现次数,求出路径的最大值(如果无穷大输出-1)

思路:有环就是-1,接下来就是DAG,暴力26个字母,对于当前字母x,将所有为x的节点权值设为1,其它节点权值设为0,就是一个非常简单的DP了。

代码:

 1 //#include "bits/stdc++.h"
 2 #include "cstdio"
 3 #include "map"
 4 #include "set"
 5 #include "cmath"
 6 #include "queue"
 7 #include "vector"
 8 #include "string"
 9 #include "cstring"
10 #include "time.h"
11 #include "iostream"
12 #include "stdlib.h"
13 #include "algorithm"
14 #define db double
15 #define ll long long
16 #define vec vector<ll>
17 #define Mt  vector<vec>
18 #define ci(x) scanf("%d",&x)
19 #define cd(x) scanf("%lf",&x)
20 #define cl(x) scanf("%lld",&x)
21 #define pi(x) printf("%d\n",x)
22 #define pd(x) printf("%f\n",x)
23 #define pl(x) printf("%lld\n",x)
24 #define inf 0x3f3f3f3f
25 #define rep(i, x, y) for(int i=x;i<=y;i++)
26 const int N   = 3e5 + 5;
27 const int mod = 1e9 + 7;
28 const int MOD = mod - 1;
29 const db  eps = 1e-10;
30 const db  PI  = acos(-1.0);
31 using namespace std;
32 vector<int> g[N];
33 queue<int> q;
34 char s[N];
35 int in[N],deg[N],vis[N],f[N],val[N];
36 int n,m,ans;
37 bool cal()//判环
38 {
39     int cnt=0;
40     for(int i=1;i<=n;i++){
41         if(!in[i]) q.push(i),cnt++;
42         vis[i]=1;
43     }
44     while(q.size()){
45         int v=q.front();
46         q.pop();
47         for(int i=0;i<g[v].size();i++){
48             int vv=g[v][i];
49             in[vv]--;
50             if(!in[vv]) vis[vv]=1,q.push(vv),cnt++;
51         }
52     }
53     return cnt==n;
54 }
55 void dfs(int u)//DP(DAG)
56 {
57     f[u]=val[u];
58     vis[u]=1;
59     for(int i=0;i<g[u].size();i++){
60         int v=g[u][i];
61         if(!vis[v]) dfs(v);
62         f[u]=max(f[u],f[v]+val[u]);
63     }
64     ans=max(f[u],ans);
65 }
66 int main()
67 {
68     ci(n),ci(m);
69     scanf("%s",s+1);
70     for(int i=0;i<m;i++){
71         int x,y;
72         ci(x),ci(y);
73         g[x].push_back(y);
74         in[y]++,deg[y]++;
75     }
76     if(!cal()) puts("-1");
77     else
78     {
79         for(int i=0;i<26;i++){
80             memset(vis,0, sizeof(vis));
81             memset(f,0, sizeof(f));
82             for(int j=1;j<=n;j++){//节点赋值
83                 if(s[j]=='a'+i) val[j]=1;
84                 else val[j]=0;
85             }
86             for(int j=1;j<=n;j++){
87                 if(!deg[j]) dfs(j);
88             }
89         }
90         pi(ans);
91     }
92     return 0;
93 }

 

 

posted @ 2018-02-02 20:04  thges  阅读(253)  评论(0编辑  收藏  举报