SP1716 GSS3 - Can you answer these queries III

题意翻译

nn 个数,qq 次操作

操作0 x yA_xAx 修改为yy

操作1 l r询问区间[l, r][l,r] 的最大子段和

感谢 @Edgration 提供的翻译

题目描述

You are given a sequence A of N (N <= 50000) integers between -10000 and 10000. On this sequence you have to apply M (M <= 50000) operations:
modify the i-th element in the sequence or for given x y print max{Ai + Ai+1 + .. + Aj | x<=i<=j<=y }.

输入输出格式

输入格式:

 

The first line of input contains an integer N. The following line contains N integers, representing the sequence A1..AN.
The third line contains an integer M. The next M lines contain the operations in following form:
0 x y: modify Ax into y (|y|<=10000).
1 x y: print max{Ai + Ai+1 + .. + Aj | x<=i<=j<=y }.

 

输出格式:

 

For each query, print an integer as the problem required.

 

输入输出样例

输入样例#1: 复制
4
1 2 3 4
4
1 1 3
0 3 -3
1 2 4
1 3 3
输出样例#1: 复制
6
4
-3

其实很基础的一道线段树,但是赛场上就是调不通,又是一次赛后AC的典范,一定是我写代码的方式不对。。。
 1 #include <bits/stdc++.h>
 2 #define mid ((t[d].l + t[d].r) >> 1)
 3 using namespace std;
 4 const int N = 50005;
 5 struct Tree{
 6     int l,r,lgss,rgss,gss,sum;
 7 }t[N*8];
 8 
 9 int n,m;
10 int a[N];
11 
12 void build(int d,int l,int r){
13     t[d].l = l;t[d].r = r;
14     if (l == r){
15         t[d].gss = t[d].lgss = t[d].rgss = t[d].sum = a[l];
16         return;
17     }
18     build(d*2,l,mid);
19     build(d*2+1,mid+1,r);
20     t[d].sum = t[d*2].sum + t[d*2+1].sum;
21     t[d].gss = max(t[d*2].gss,max(t[d*2+1].gss,t[d*2].rgss+t[d*2+1].lgss));
22     t[d].lgss = max(t[d*2].lgss,t[d*2].sum + t[d*2+1].lgss);
23     t[d].rgss = max(t[d*2+1].rgss,t[d*2].rgss + t[d*2+1].sum);
24 }
25 
26 void modify(int d,int x,int y){
27     if (t[d].l == x && t[d].r == x){
28         t[d].gss = t[d].lgss = t[d].rgss = t[d].sum = y;
29         return;
30     }
31     if (x <= mid) modify(d*2,x,y);
32     else if (x > mid) modify(d*2+1,x,y);
33     t[d].sum = t[d*2].sum + t[d*2+1].sum;
34     t[d].gss = max(t[d*2].gss,max(t[d*2+1].gss,t[d*2].rgss+t[d*2+1].lgss));
35     t[d].lgss = max(t[d*2].lgss,t[d*2].sum + t[d*2+1].lgss);
36     t[d].rgss = max(t[d*2+1].rgss,t[d*2].rgss + t[d*2+1].sum);
37 }
38 
39 int getl(int d,int l,int r){
40     if (t[d].l == l && t[d].r == r){
41         return t[d].lgss;
42     }
43     if (r > mid){
44         return max(getl(d*2,l,mid),t[d*2].sum + getl(d*2+1,mid+1,r));
45     }
46     return getl(d*2,l,r);
47 }
48 
49 int getr(int d,int l,int r){
50     if (t[d].l == l && t[d].r == r){
51         return t[d].rgss;
52     }
53     if (l <= mid){
54         return max(getr(d*2+1,mid+1,r),getr(d*2,l,mid) + t[d*2+1].sum);
55     }else return getr(d*2+1,l,r);
56 }
57 
58 int get(int d,int l,int r){
59     if (t[d].l == l && t[d].r == r){
60         return t[d].gss;
61     }
62     if (r <= mid) return get(d*2,l,r);
63     else if (l > mid) return get(d*2+1,l,r);
64     return max(get(d*2,l,mid),max(get(d*2+1,mid+1,r),getr(d*2,l,mid)+getl(d*2+1,mid+1,r)));
65 }
66 
67 int main(){
68     scanf("%d",&n);
69     for (int i = 1;i <= n;++i){
70         scanf("%d",a+i);
71 
72     }
73     build(1,1,n);
74     scanf("%d",&m);
75     for (int i = 0;i < m;++i){
76         int kk,x,y;
77         scanf("%d%d%d",&kk,&x,&y);
78         if (kk == 0){
79             modify(1,x,y);
80         }else {
81             printf("%d\n",get(1,x,y));
82         }
83     }
84 }

 

posted @ 2019-04-27 22:25  mizersy  阅读(201)  评论(0编辑  收藏  举报