浮点数[ZT]

浮点数保存的字节格式如下:

地址 +0             +1               +2               +3
内容 SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM

这里
S 代表符号位,1是负,0是正
E 偏移127的幂,二进制阶码=(EEEEEEEE)-127。
M 24位的尾数保存在23位中,只存储23位,最高位固定为1。此方法用最较少的位数实现了
较高的有效位数,提高了精度。

零是一个特定值,幂是0 尾数也是0。

举例说明,浮点数-12.5作为一个十六进制数0xC1480000保存在存储区中,这个值如下:

地址 +0    +1     +2    +3
内容 0xC1 0x48 0x00 0x00

浮点数和十六进制等效保存值之间的转换相当简单。下面的例子说明上面的值-12.5如何转换。
浮点保存值不是一个直接的格式,要转换为一个浮点数,位必须按上面的浮点数保存格式表所列的那样分开,例如:

地址       +0             +1               +2               +3
格式       SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM
二进制    1100 0001  0100 1000   0000 0000     0000 0000
十六进制  C1            48                00                00

从这个例子可以得到下面的信息:
符号位是1 表示一个负数
幂是二进制10000010或十进制130,130减去127是3,就是实际的幂。
尾数是后面的二进制数10010000000000000000000

在尾数的左边有一个省略的小数点和1,这个1在浮点数的保存中经常省略,加上一个1和小数点到尾数的开头,得到尾数值如下:
1.10010000000000000000000

接着,根据指数调整尾数。一个负的指数向左移动小数点。一个正的指数向右移动小数点。因为指数是3,尾数调整如下:
1100.10000000000000000000

结果是一个二进制浮点数,小数点左边的二进制数代表所处位置的2的幂,例如:
1100表示 (1*2^3)+(1*2^2)+(0*2^1)+(0*2^0)=12
小数点的右边也代表所处位置的2的幂,只是幂是负的。例如:
.100...表示(1*2^(-1))+(0*2^(-2))+(0*2^(-2))...=0.5
这些值的和是12.5。
因为设置的符号位表示这数是负的,因此十六进制值0xC1480000表示-12.5
posted @ 2009-08-16 17:39  芈希有  阅读(294)  评论(0编辑  收藏  举报