《T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction》 代码解读
论文链接:https://arxiv.org/abs/1811.05320
博客原作者Missouter,博客链接https://www.cnblogs.com/missouter/,欢迎交流。
解读了一下这篇论文github上关于T-GCN的代码,主要分为main文件与TGCN文件两部分,后续有空将会更新其他部分作为baseline代码的解读(鸽)。
1、main.py
# -*- coding: utf-8 -*- import pickle as pkl import tensorflow as tf import pandas as pd import numpy as np import math import os import numpy.linalg as la from input_data import preprocess_data,load_sz_data,load_los_data from tgcn import tgcnCell #from gru import GRUCell from visualization import plot_result,plot_error from sklearn.metrics import mean_squared_error,mean_absolute_error #import matplotlib.pyplot as plt import time time_start = time.time() ###### Settings ###### flags = tf.app.flags FLAGS = flags.FLAGS flags.DEFINE_float('learning_rate', 0.001, 'Initial learning rate.') flags.DEFINE_integer('training_epoch', 1, 'Number of epochs to train.') flags.DEFINE_integer('gru_units', 64, 'hidden units of gru.') flags.DEFINE_integer('seq_len',12 , ' time length of inputs.') flags.DEFINE_integer('pre_len', 3, 'time length of prediction.') flags.DEFINE_float('train_rate', 0.8, 'rate of training set.') flags.DEFINE_integer('batch_size', 32, 'batch size.') flags.DEFINE_string('dataset', 'los', 'sz or los.') flags.DEFINE_string('model_name', 'tgcn', 'tgcn') model_name = FLAGS.model_name data_name = FLAGS.dataset train_rate = FLAGS.train_rate seq_len = FLAGS.seq_len output_dim = pre_len = FLAGS.pre_len batch_size = FLAGS.batch_size lr = FLAGS.learning_rate training_epoch = FLAGS.training_epoch gru_units = FLAGS.gru_units
开头部分用于设置训练基本参数;使用flag对参数进行设置与说明。
if data_name == 'sz': data, adj = load_sz_data('sz') if data_name == 'los': data, adj = load_los_data('los') time_len = data.shape[0] num_nodes = data.shape[1] data1 =np.mat(data,dtype=np.float32) #### normalization max_value = np.max(data1) data1 = data1/max_value trainX, trainY, testX, testY = preprocess_data(data1, time_len, train_rate, seq_len, pre_len) totalbatch = int(trainX.shape[0]/batch_size) training_data_count = len(trainX)
这部分导入数据集并对数据进行归一化,input_data文件中导入函数如下:
def load_sz_data(dataset): sz_adj = pd.read_csv(r'data/sz_adj.csv',header=None) adj = np.mat(sz_adj) sz_tf = pd.read_csv(r'data/sz_speed.csv') return sz_tf, adj def load_los_data(dataset): los_adj = pd.read_csv(r'data/los_adj.csv',header=None) adj = np.mat(los_adj) los_tf = pd.read_csv(r'data/los_speed.csv') return los_tf, adj
其中preprocess_data函数根据main函数开头设置的训练集、测试集比例对数据集进行分割:
def preprocess_data(data, time_len, rate, seq_len, pre_len): train_size = int(time_len * rate) train_data = data[0:train_size] test_data = data[train_size:time_len] trainX, trainY, testX, testY = [], [], [], [] for i in range(len(train_data) - seq_len - pre_len): a = train_data[i: i + seq_len + pre_len] trainX.append(a[0 : seq_len]) trainY.append(a[seq_len : seq_len + pre_len]) for i in range(len(test_data) - seq_len -pre_len): b = test_data[i: i + seq_len + pre_len] testX.append(b[0 : seq_len]) testY.append(b[seq_len : seq_len + pre_len]) trainX1 = np.array(trainX) trainY1 = np.array(trainY) testX1 = np.array(testX) testY1 = np.array(testY) return trainX1, trainY1, testX1, testY1
接着定义了TGCN函数:
def TGCN(_X, _weights, _biases): ### cell_1 = tgcnCell(gru_units, adj, num_nodes=num_nodes) cell = tf.nn.rnn_cell.MultiRNNCell([cell_1], state_is_tuple=True) _X = tf.unstack(_X, axis=1) outputs, states = tf.nn.static_rnn(cell, _X, dtype=tf.float32) m = [] for i in outputs: o = tf.reshape(i,shape=[-1,num_nodes,gru_units]) o = tf.reshape(o,shape=[-1,gru_units]) m.append(o) last_output = m[-1] output = tf.matmul(last_output, _weights['out']) + _biases['out'] output = tf.reshape(output,shape=[-1,num_nodes,pre_len]) output = tf.transpose(output, perm=[0,2,1]) output = tf.reshape(output, shape=[-1,num_nodes]) return output, m, states
函数开头首先引入了TGCN的计算单元,tgcnCell的解读将在后文进行;使用tf.nn.rnn_cell.MultiRNNCell实现多层神经网络;对输入数据进行处理,创建由RNNCell指定的循环神经网络。接着对每个循环神经网络的输出进行处理,首先重塑结果张量,tf.reshape中参数-1表示计算该维度的大小,以使总大小保持不变;第二维为点的数量,第三维为GRU单元的数量,再紧接上一层张量重塑的结果继续进行重塑,得到由长度为GRU数量列表组成的列表,使用tf.matmul将输出矩阵乘以权重矩阵,biases为偏差,接着重塑输出张量为第二维为数据点的数量,第三维为预测长度的矩阵,再置换输出矩阵,使用transpose按照[0,2,1]重新排列尺寸,进一步重塑为由数据点数目长度列表组成的列表,得到最终输出结果。
紧接着下一段使用占位符定义输入与标签,随机初始化权重与偏差:
inputs = tf.placeholder(tf.float32, shape=[None, seq_len, num_nodes]) labels = tf.placeholder(tf.float32, shape=[None, pre_len, num_nodes]) weights = { 'out': tf.Variable(tf.random_normal([gru_units, pre_len], mean=1.0), name='weight_o')} biases = { 'out': tf.Variable(tf.random_normal([pre_len]),name='bias_o')}
if model_name == 'tgcn': pred,ttts,ttto = TGCN(inputs, weights, biases) y_pred = pred
lambda_loss = 0.0015 Lreg = lambda_loss * sum(tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables()) label = tf.reshape(labels, [-1,num_nodes])
loss = tf.reduce_mean(tf.nn.l2_loss(y_pred-label) + Lreg)
对应论文公式(详见上篇博客):
定义均方根误差:
error = tf.sqrt(tf.reduce_mean(tf.square(y_pred-label)))
optimizer = tf.train.AdamOptimizer(lr).minimize(loss)
对迭代训练过程进行初始化:
variables = tf.global_variables() saver = tf.train.Saver(tf.global_variables()) # #sess = tf.Session() gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) sess.run(tf.global_variables_initializer()) out = 'out/%s'%(model_name) #out = 'out/%s_%s'%(model_name,'perturbation') path1 = '%s_%s_lr%r_batch%r_unit%r_seq%r_pre%r_epoch%r'%(model_name,data_name,lr,batch_size,gru_units,seq_len,pre_len,training_epoch) path = os.path.join(out,path1) if not os.path.exists(path): os.makedirs(path)
其中global_variables用于获取程序中的变量,配合train.Saver将训练好的模型参数保存起来,以便以后进行验证或测试。tf.GPUOptions用于限制GPU资源的使用,不过为什么要限制使用三分之一的显存尚不清楚,算训练小技巧嘛?初始化模型的参数后设置输出路径与文件名,不详细讨论。
文件中的评估模块定义了论文实验部分的指标:均方根误差、平均绝对误差、准确率、确定系数与可方差值。
def evaluation(a,b): rmse = math.sqrt(mean_squared_error(a,b)) mae = mean_absolute_error(a, b) F_norm = la.norm(a-b,'fro')/la.norm(a,'fro') r2 = 1-((a-b)**2).sum()/((a-a.mean())**2).sum() var = 1-(np.var(a-b))/np.var(a) return rmse, mae, 1-F_norm, r2, var
接下来就是常见的训练部分:
for epoch in range(training_epoch): for m in range(totalbatch): mini_batch = trainX[m * batch_size : (m+1) * batch_size] mini_label = trainY[m * batch_size : (m+1) * batch_size] _, loss1, rmse1, train_output = sess.run([optimizer, loss, error, y_pred], feed_dict = {inputs:mini_batch, labels:mini_label}) batch_loss.append(loss1) batch_rmse.append(rmse1 * max_value) # Test completely at every epoch loss2, rmse2, test_output = sess.run([loss, error, y_pred], feed_dict = {inputs:testX, labels:testY}) test_label = np.reshape(testY,[-1,num_nodes]) rmse, mae, acc, r2_score, var_score = evaluation(test_label, test_output) test_label1 = test_label * max_value#反归一化 test_output1 = test_output * max_value test_loss.append(loss2) test_rmse.append(rmse * max_value) test_mae.append(mae * max_value) test_acc.append(acc) test_r2.append(r2_score) test_var.append(var_score) test_pred.append(test_output1) print('Iter:{}'.format(epoch), 'train_rmse:{:.4}'.format(batch_rmse[-1]), 'test_loss:{:.4}'.format(loss2), 'test_rmse:{:.4}'.format(rmse), 'test_acc:{:.4}'.format(acc)) if (epoch % 500 == 0): saver.save(sess, path+'/model_100/TGCN_pre_%r'%epoch, global_step = epoch) time_end = time.time() print(time_end-time_start,'s')
附带对每个周期训练结果的测试、对结果的反归一化,训练设置为每训练500层保存一次模型,并对训练得到的参数指标进行打印与保存。代码最后还给出了可视化数据指标的方法,即将数据指标写入csv文件中:
b = int(len(batch_rmse)/totalbatch) batch_rmse1 = [i for i in batch_rmse] train_rmse = [(sum(batch_rmse1[i*totalbatch:(i+1)*totalbatch])/totalbatch) for i in range(b)] batch_loss1 = [i for i in batch_loss] train_loss = [(sum(batch_loss1[i*totalbatch:(i+1)*totalbatch])/totalbatch) for i in range(b)] index = test_rmse.index(np.min(test_rmse)) test_result = test_pred[index] var = pd.DataFrame(test_result) var.to_csv(path+'/test_result.csv',index = False,header = False) #plot_result(test_result,test_label1,path) #plot_error(train_rmse,train_loss,test_rmse,test_acc,test_mae,path) print('min_rmse:%r'%(np.min(test_rmse)), 'min_mae:%r'%(test_mae[index]), 'max_acc:%r'%(test_acc[index]), 'r2:%r'%(test_r2[index]), 'var:%r'%test_var[index])
至此对论文对应代码main文件的解读就结束了。
2、tgcn.py
此文件只定义了一个TGCN计算单元的类,初始化部分不作详谈:
# -*- coding: utf-8 -*- #import numpy as np import tensorflow as tf from tensorflow.contrib.rnn import RNNCell from utils import calculate_laplacian class tgcnCell(RNNCell): """Temporal Graph Convolutional Network """ def call(self, inputs, **kwargs): pass - def __init__(self, num_units, adj, num_nodes, input_size=None, act=tf.nn.tanh, reuse=None): super(tgcnCell, self).__init__(_reuse=reuse) self._act = act self._nodes = num_nodes self._units = num_units self._adj = [] self._adj.append(calculate_laplacian(adj)) @property def state_size(self): return self._nodes * self._units @property def output_size(self): return self._units
重点之一在于对GRU单元的定义:
def __call__(self, inputs, state, scope=None): with tf.variable_scope(scope or "tgcn"): with tf.variable_scope("gates"): value = tf.nn.sigmoid( self._gc(inputs, state, 2 * self._units, bias=1.0, scope=scope)) r, u = tf.split(value=value, num_or_size_splits=2, axis=1) with tf.variable_scope("candidate"): r_state = r * state c = self._act(self._gc(inputs, r_state, self._units, scope=scope)) new_h = u * state + (1 - u) * c return new_h, new_h
代码还原论文中tgcn单元的计算过程(详见上一篇博客):
参数中state对应论文中上一时刻的状态,即ht-1。variable_scope使得多个变量得以有相同的命名;上述代码中tf.nn.sigmoid语句为激活函数,用于进行图卷积GC;tf.split语句用于
函数最后返回最新状态ht。
图卷积过程最后被定义:
def _gc(self, inputs, state, output_size, bias=0.0, scope=None): ## inputs:(-1,num_nodes) inputs = tf.expand_dims(inputs, 2) ## state:(batch,num_node,gru_units) state = tf.reshape(state, (-1, self._nodes, self._units)) ## concat x_s = tf.concat([inputs, state], axis=2) input_size = x_s.get_shape()[2].value ## (num_node,input_size,-1) x0 = tf.transpose(x_s, perm=[1, 2, 0]) x0 = tf.reshape(x0, shape=[self._nodes, -1]) scope = tf.get_variable_scope() with tf.variable_scope(scope): for m in self._adj: x1 = tf.sparse_tensor_dense_matmul(m, x0) # print(x1) x = tf.reshape(x1, shape=[self._nodes, input_size,-1]) x = tf.transpose(x,perm=[2,0,1]) x = tf.reshape(x, shape=[-1, input_size]) weights = tf.get_variable( 'weights', [input_size, output_size], initializer=tf.contrib.layers.xavier_initializer()) x = tf.matmul(x, weights) # (batch_size * self._nodes, output_size) biases = tf.get_variable( "biases", [output_size], initializer=tf.constant_initializer(bias, dtype=tf.float32)) x = tf.nn.bias_add(x, biases) x = tf.reshape(x, shape=[-1, self._nodes, output_size]) x = tf.reshape(x, shape=[-1, self._nodes * output_size]) return x
函数开头对特征矩阵进行构建:使用expand_dims增加输入维度,再使用将当前状态转化为第二维为数据点数量,第三维为gru单元数量的列表,使用concat在第二个维度拼接张量,最后得到一个长度为数据点数量的列表。get_variable_scope获取变量后,将得到的特征矩阵与邻接矩阵相乘。在tf.nn.bias_add处激活得到两层GCN,对应公式:
最终返回输出值x。此函数经历了很多张量的形式转换,对应论文空间关系建模过程。
关于论文中TGCN部分代码的解读结束了,模块化的编程对于学习实验手法有很多值得学习的地方,对于TGCN本身的实现、涉及张量的处理变换也有很多可以借鉴的地方。