鱼儿慢慢游~~

导航

 

题目描述:

The set [1,2,3,...,n] contains a total of n! unique permutations.

By listing and labeling all of the permutations in order, we get the following sequence for n = 3:

"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.

Note:

Given n will be between 1 and 9 inclusive.
Given k will be between 1 and n! inclusive.

Example 1:

Input: n = 3, k = 3
Output: "213"

Example 2:

Input: n = 4, k = 9
Output: "2314"

即:对于一个整数n,共有n!个排列,给出数字k,返回第k个全排列

观察题目可得如下规律:

对于n,其中每个字母 开头的全排列共有n-1!个,如数字3,以 1开头的共有2!个。

因此:m= k / (n-1)!  可以确定出第一个数字, 将该数字加入返回值列表中。

    k %(n-1)! 可以得到在剩余的数字列表中,该取第几个 即 k = k%(n-1)!

因此采用循环或者递归可解决

这里注意边界(结束)条件: 当k%(n-1)! ==0时,实际为 以m-1开头的最后一个排列,因此,将m-1放入队列,剩下的数字倒序即可

          当k%(n-1)! == 1时,即以 m开头的第一个,将m放入队列,其余数字依次放入即可。

代码如下:

#!/usr/bin/python
#coding=utf-8

class Solution(object):
    def getPermutation(self, n, k):
        """
        :type n: int
        :type k: int
        :rtype: str
         """
        res = ''
        step = n - 1
        used = []
        use = 0
        remain = list(range(1, n+1))
        if step == 0:
            return str(n)
        while(step != 0):
            maxPer = self.factorial(step)
            firstOrder = k / maxPer
            secondOrder = k % maxPer
            if secondOrder == 0:
                use = remain.pop(firstOrder-1)
            else:
                use = remain.pop(firstOrder)
            res = res + str(use)
            used.append(use)
            if not remain:
                return res
            if secondOrder == 1:
                tmp = reduce(lambda x, y: str(x)+str(y), remain)
                res = res + str(tmp)
                return res

            if secondOrder == 0:
                if not remain:
                    return res
                tmpList = remain
                tmpList.reverse()
                tmp = reduce(lambda x, y: str(x)+str(y), tmpList)
                res = res + str(tmp)
                return res
            k = secondOrder
            step = step - 1

    def factorial(self, n):
        return reduce(lambda x,y:x*y,[1]+range(2,n+1))
s = Solution()
print s.getPermutation(3, 6)

 

posted on 2018-10-16 11:31  miss_UU  阅读(204)  评论(0编辑  收藏  举报