Red and Blue Graph(图论,组合计数)

题意

给定一个\(N\)个点\(M\)条边的无向图。

\(2^N\)种方式将每个节点染成红色或者蓝色。求满足下列条件的染色方案数:

  • 恰好有\(K\)个点染成了红色
  • 有偶数条边的端点染成了不同颜色

题目链接:https://atcoder.jp/contests/abc262/tasks/abc262_e

数据范围

\(2 \leq N \leq 2 \times 10^5\)
\(1 \leq M \leq 2 \times 10^5\)
\(0 \leq K \leq N\)

思路

考虑染成红色节点的度数和。令\(S\)为红色节点的度数和,\(R\)为两段点都为红色的边数,\(D\)为两段点为不同颜色的边数,则有:\(S = 2R+D\)

由于\(D\)为偶数,因此\(S\)也为偶数。因此有偶数个红色点的度数为奇数。

因此,可以通过枚举红色点中奇度点的个数进行计数。

代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

typedef long long ll;

const int N = 200010, mod = 998244353;

ll n, m, k;
ll deg[N];
ll fac[N], infac[N];

ll qmi(ll a, ll b)
{
    ll res = 1;
    while(b) {
        if(b & 1) res = res * a % mod;
        b >>= 1;
        a = a * a % mod;
    }
    return res;
}

void init()
{
    fac[0] = infac[0] = 1;
    for(int i = 1; i < N; i ++) {
        fac[i] = fac[i - 1] * i % mod;
        infac[i] = infac[i - 1] * qmi(i, mod - 2) % mod;
    }
}

ll C(ll a, ll b)
{
    return fac[a] * infac[b] % mod * infac[a - b] % mod;
}

int main()
{
    scanf("%lld%lld%lld", &n, &m, &k);
    for(int i = 0; i < m; i ++) {
        int a, b;
        scanf("%d%d", &a, &b);
        deg[a] ++, deg[b] ++;
    }
    ll odd = 0, even = 0;
    for(int i = 1; i <= n; i ++) {
        if(deg[i] % 2) odd ++;
        else even ++;
    }
    init();
    ll res = 0;
    for(int i = 0; i <= k; i += 2) {
        if(i > odd) break;
        if(k - i <= even) res = (res + C(odd, i) * C(even, k - i) % mod) % mod;
    }
    printf("%lld\n", res);
    return 0;
}
posted @ 2022-09-10 00:32  pbc的成长之路  阅读(50)  评论(0编辑  收藏  举报