Red and Blue Graph(图论,组合计数)
题意
给定一个\(N\)个点\(M\)条边的无向图。
有\(2^N\)种方式将每个节点染成红色或者蓝色。求满足下列条件的染色方案数:
- 恰好有\(K\)个点染成了红色
- 有偶数条边的端点染成了不同颜色
题目链接:https://atcoder.jp/contests/abc262/tasks/abc262_e
数据范围
\(2 \leq N \leq 2 \times 10^5\)
\(1 \leq M \leq 2 \times 10^5\)
\(0 \leq K \leq N\)
思路
考虑染成红色节点的度数和。令\(S\)为红色节点的度数和,\(R\)为两段点都为红色的边数,\(D\)为两段点为不同颜色的边数,则有:\(S = 2R+D\)
由于\(D\)为偶数,因此\(S\)也为偶数。因此有偶数个红色点的度数为奇数。
因此,可以通过枚举红色点中奇度点的个数进行计数。
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N = 200010, mod = 998244353;
ll n, m, k;
ll deg[N];
ll fac[N], infac[N];
ll qmi(ll a, ll b)
{
ll res = 1;
while(b) {
if(b & 1) res = res * a % mod;
b >>= 1;
a = a * a % mod;
}
return res;
}
void init()
{
fac[0] = infac[0] = 1;
for(int i = 1; i < N; i ++) {
fac[i] = fac[i - 1] * i % mod;
infac[i] = infac[i - 1] * qmi(i, mod - 2) % mod;
}
}
ll C(ll a, ll b)
{
return fac[a] * infac[b] % mod * infac[a - b] % mod;
}
int main()
{
scanf("%lld%lld%lld", &n, &m, &k);
for(int i = 0; i < m; i ++) {
int a, b;
scanf("%d%d", &a, &b);
deg[a] ++, deg[b] ++;
}
ll odd = 0, even = 0;
for(int i = 1; i <= n; i ++) {
if(deg[i] % 2) odd ++;
else even ++;
}
init();
ll res = 0;
for(int i = 0; i <= k; i += 2) {
if(i > odd) break;
if(k - i <= even) res = (res + C(odd, i) * C(even, k - i) % mod) % mod;
}
printf("%lld\n", res);
return 0;
}