函数式API简介
函数式API简介
导入相关库以及数据加载
相关库导入:
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
%matplotlib inline
数据加载:
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
数据归一化:
train_images = train_images / 255.0
test_images = test_images / 255.0
函数式定义模型
输入:
input = keras.Input(shape = (28, 28))
这里的意思就是可以传任意28*28的数据
模型定义:
x = keras.layers.Flatten()(input)
x = keras.layers.Dense(32, activation = 'relu')(x)
x = keras.layers.Dropout(0.5)(x)
x = keras.layers.Dense(64, activation = 'relu')(x)
输出:
output = keras.layers.Dense(10, activation = 'softmax')(x)
构建模型:
model = keras.Model(inputs = input, outputs = output)
model.summary()
模型编译
model.compile(
optimizer = 'adam',
loss = 'sparse_categorical_crossentropy',
metrics = ['acc']
)
模型训练
history = model.fit(
train_images,
train_labels,
epochs = 30,
validation_data = (test_images, test_labels)
)
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
· Sdcb Chats 技术博客:数据库 ID 选型的曲折之路 - 从 Guid 到自增 ID,再到
· 语音处理 开源项目 EchoSharp
· 《HelloGitHub》第 106 期
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 使用 Dify + LLM 构建精确任务处理应用