函数式API简介

函数式API简介

导入相关库以及数据加载

相关库导入:

import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
%matplotlib inline

数据加载:

fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

数据归一化:

train_images = train_images / 255.0
test_images = test_images / 255.0

函数式定义模型

输入:

input = keras.Input(shape = (28, 28))

这里的意思就是可以传任意28*28的数据

模型定义:

x = keras.layers.Flatten()(input)
x = keras.layers.Dense(32, activation = 'relu')(x)
x = keras.layers.Dropout(0.5)(x)
x = keras.layers.Dense(64, activation = 'relu')(x)

输出:

output = keras.layers.Dense(10, activation = 'softmax')(x)

构建模型:

model = keras.Model(inputs = input, outputs = output)
model.summary()

模型编译

model.compile(
    optimizer = 'adam',
    loss      = 'sparse_categorical_crossentropy',
    metrics   = ['acc']
)

模型训练

history = model.fit(
    train_images,
    train_labels,
    epochs = 30,
    validation_data = (test_images, test_labels)
)
posted @   pbc的成长之路  阅读(203)  评论(0编辑  收藏  举报
编辑推荐:
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
阅读排行:
· Sdcb Chats 技术博客:数据库 ID 选型的曲折之路 - 从 Guid 到自增 ID,再到
· 语音处理 开源项目 EchoSharp
· 《HelloGitHub》第 106 期
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 使用 Dify + LLM 构建精确任务处理应用
点击右上角即可分享
微信分享提示