Java Lambda 方式将List按照对象属性值分组成Map
Java Lambda 方式将List按照对象属性值分组成Map
有时候,需要对一个List结果集进行分组处理(按照对象中的某一个属性值进行分组)
例如:使用三国英雄的所属国家,进行分组英雄。
1、英雄实体类(Hero)
public class Hero { private String name; private String country; public Hero(String name, String country) { this.name = name; this.country = country; } public String getName() { return name; } public void setName(String name) { this.name = name; } public String getCountry() { return country; } public void setCountry(String country) { this.country = country; } @Override public String toString() { return "Hero{" + "name='" + name + '\'' + ", country='" + country + '\'' + '}'; } }
2、代码实现(Lambda方式)进行分组
package com.miracle.luna.lambda; import com.alibaba.fastjson.JSON; import java.util.*; import java.util.stream.Collectors; /** * Created by Miracle Luna on 2020/5/17 */ public class ThreeCountryLambda { public static void main(String[] args) { List<Hero> heroList = new ArrayList<>(); Map<String, List<Hero>> heroListMap = new HashMap<String, List<Hero>>(); Hero liubei = new Hero("刘备", "蜀国"); Hero zhugeliang = new Hero("诸葛亮", "蜀国"); Hero sunce = new Hero("孙策", "吴国"); Hero zhouyu = new Hero("周瑜", "吴国"); Hero caocao = new Hero("曹操", "魏国"); Hero guojia = new Hero("郭嘉", "魏国"); heroList.add(liubei); heroList.add(zhugeliang); heroList.add(sunce); heroList.add(zhouyu); heroList.add(caocao); heroList.add(guojia); // 按照所属国家分组 heroListMap = heroList.stream().collect(Collectors.groupingBy(hero -> hero.getCountry())); System.out.println(JSON.toJSONString(heroListMap)); } }
3、运行结果
{"吴国":[{"country":"吴国","name":"孙策"},{"country":"吴国","name":"周瑜"}],"魏国":[{"country":"魏国","name":"曹操"},{"country":"魏国","name":"郭嘉"}],"蜀国":[{"country":"蜀国","name":"刘备"},{"country":"蜀国","name":"诸葛亮"}]}
使用JSON在线解析工具(https://www.json.cn/),查看结果如下:
{ "吴国":[ { "country":"吴国", "name":"孙策" }, { "country":"吴国", "name":"周瑜" } ], "魏国":[ { "country":"魏国", "name":"曹操" }, { "country":"魏国", "name":"郭嘉" } ], "蜀国":[ { "country":"蜀国", "name":"刘备" }, { "country":"蜀国", "name":"诸葛亮" } ] }
PS:
上述场景,使用传统方式分组的话,需要遍历List,用对象中的所属国家,依次匹配Map中的key。
匹配上,则归类,加到子集中,作为Map的value。
1、代码实现(传统方式)进行分组:
package com.miracle.luna.lambda; import com.alibaba.fastjson.JSON; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; /** * Created by Miracle Luna on 2020/5/17 */ public class ThreeCountryTradition { public static void main(String[] args) { List<Hero> heroList = new ArrayList<>(); Map<String, List<Hero>> heroListMap = new HashMap<String, List<Hero>>(); Hero liubei = new Hero("刘备", "蜀国"); Hero zhugeliang = new Hero("诸葛亮", "蜀国"); Hero sunce = new Hero("孙策", "吴国"); Hero zhouyu = new Hero("周瑜", "吴国"); Hero caocao = new Hero("曹操", "魏国"); Hero guojia = new Hero("郭嘉", "魏国"); heroList.add(liubei); heroList.add(zhugeliang); heroList.add(sunce); heroList.add(zhouyu); heroList.add(caocao); heroList.add(guojia); // 按照所属国家分组 for (Hero hero : heroList) { if (!heroListMap.containsKey(hero.getCountry())) { List<Hero> valueList = new ArrayList<>(); valueList.add(hero); heroListMap.put(hero.getCountry(), valueList); } else { heroListMap.get(hero.getCountry()).add(hero); } } System.out.println(JSON.toJSONString(heroListMap)); } }
2、运行结果:
{"吴国":[{"country":"吴国","name":"孙策"},{"country":"吴国","name":"周瑜"}],"蜀国":[{"country":"蜀国","name":"刘备"},{"country":"蜀国","name":"诸葛亮"}],"魏国":[{"country":"魏国","name":"曹操"},{"country":"魏国","name":"郭嘉"}]}
{ "吴国":[ { "country":"吴国", "name":"孙策" }, { "country":"吴国", "name":"周瑜" } ], "蜀国":[ { "country":"蜀国", "name":"刘备" }, { "country":"蜀国", "name":"诸葛亮" } ], "魏国":[ { "country":"魏国", "name":"曹操" }, { "country":"魏国", "name":"郭嘉" } ] }
总结:
通过两种实现方式的代码对比,可以看出:Lambda方式的逻辑清晰,代码更加简洁。
强烈推荐大家使用!!!
希望能帮到需要的小伙伴,谢谢~
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)
2019-05-17 MyBatis 模糊查询