Python数据可视化之pyecharts模块

目录

一、简介

1. Apache ECharts

​ 说到pyecharts,就不得不先介绍一下ECharts。

​ ECharts是一个百度开源项目,是百度为数不多的良心产品之一。它是一个使用JavaScript 实现的开源可视化库,底层依托了开源渲染引擎 ZRender,支持 Canvas 和 SVG 等多种方式的渲染,提供直观,交互丰富,可高度个性化定制的数据可视化图表,可以流畅地运行在 PC 和移动设备上,兼容当前绝大部分浏览器。

​ 在2018年,ECharts成功进入了Apache 孵化器,成为百度首个进入国际顶级开源社区的项目。

​ 而pyecharts 是一个用于生成 Echarts 图表的类库,其实就是Python和ECharts的对接。

2. pyecharts的特性

  • 简洁的 API 设计,使用如丝滑般流畅,支持链式调用
  • 囊括了 30+ 种常见图表,应有尽有
  • 支持主流 Notebook 环境,Jupyter Notebook 和 JupyterLab
  • 可轻松集成至 Flask,Django 等主流 Web 框架
  • 高度灵活的配置项,可轻松搭配出精美的图表
  • 详细的文档和示例,帮助开发者更快的上手项目
  • 多达 400+ 地图文件以及原生的百度地图,为地理数据可视化提供强有力的支持

二、环境搭建

1. 安装Python3环境搭建

​ 请参考:https://www.runoob.com/python3/python3-install.html

2. 安装pyecharts

​ pyecharts 分为 v0.5.X 和 v1 两个大版本,v0.5.X 和 v1 间不兼容。因为v0.5.X已经不再维护,因此推荐安装v1最新版本。

  • 使用pip安装

    $ pip install -U pyecharts
    
  • 安装源码

    $ git clone https://github.com/pyecharts/pyecharts.git
    $ cd pyecharts
    $ pip install -r requirements.txt
    $ python setup.py install
    

三、常见的几种图形

1. 饼状图 ( Pie )

  • 示例代码
from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker


c = (
    Pie()
    .add("", [list(z) for z in zip(Faker.choose(), Faker.values())])
    .set_global_opts(title_opts=opts.TitleOpts(title="Pie-基本示例"))
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    .render("饼状图基本示例.html")
)

其中[Faker.choose()](#1. Faker函数库)和[Faker.values()](#1. Faker函数库)为pyecharts提供的随机假数据生成方法。

  • 结果展示

2. 柱状图 ( Bar )

  • 示例代码

    from pyecharts import options as opts
    from pyecharts.charts import Bar
    from pyecharts.faker import Faker
    
    
    c = (
        Bar()
        .add_xaxis(Faker.choose())
        .add_yaxis("商家A", Faker.values())
        .add_yaxis("商家B", Faker.values())
        .set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题"))
        .render("柱状图基本示例.html")
    )
    
  • 结果展示

3. 折线图 ( Line )

  • 示例代码

    import pyecharts.options as opts
    from pyecharts.charts import Line
    from pyecharts.faker import Faker
    
    
    c = (
        Line()
        .add_xaxis(Faker.choose())
        .add_yaxis("商家A", Faker.values())
        .add_yaxis("商家B", Faker.values())
        .set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"))
        .render("折线图基本示例.html")
    )
    
  • 结果展示

4. 3D柱状图 ( Bar3D )

  • 示例代码

    import random
    
    from pyecharts import options as opts
    from pyecharts.charts import Bar3D
    from pyecharts.faker import Faker
    
    
    data = [(i, j, random.randint(0, 12)) for i in range(6) for j in range(24)]
    c = (
        Bar3D()
        .add(
            "",
            [[d[1], d[0], d[2]] for d in data],
            xaxis3d_opts=opts.Axis3DOpts(Faker.clock, type_="category"),
            yaxis3d_opts=opts.Axis3DOpts(Faker.week_en, type_="category"),
            zaxis3d_opts=opts.Axis3DOpts(type_="value"),
        )
        .set_global_opts(
            visualmap_opts=opts.VisualMapOpts(max_=20),
            title_opts=opts.TitleOpts(title="Bar3D-基本示例"),
        )
        .render("3D柱状图基本示例.html")
    )
    

    其中[Faker.clock](#1. Faker函数库)和[Faker.week_en](#1. Faker函数库)为pyecharts提供的假数据。

  • 结果展示

5. 日历图 ( Calendar )

  • 示例代码

    import datetime
    import random
    
    from pyecharts import options as opts
    from pyecharts.charts import Calendar
    
    
    begin = datetime.date(2017, 1, 1)
    end = datetime.date(2017, 12, 31)
    data = [
        [str(begin + datetime.timedelta(days=i)), random.randint(1000, 25000)]
        for i in range((end - begin).days + 1)
    ]
    
    c = (
        Calendar()
        .add("", data, calendar_opts=opts.CalendarOpts(range_="2020"))
        .set_global_opts(
            title_opts=opts.TitleOpts(title="Calendar-2020年微信步数情况"),
            visualmap_opts=opts.VisualMapOpts(
                max_=20000,
                min_=500,
                orient="horizontal",
                is_piecewise=True,
                pos_top="230px",
                pos_left="100px",
            ),
        )
        .render("日历图基本示例.html")
    )
    
  • 结果展示

6. 仪表盘 ( Gauge )

  • 示例代码

    from pyecharts import options as opts
    from pyecharts.charts import Gauge
    
    
    c = (
        Gauge()
        .add("", [("完成率", 66.6)])
        .set_global_opts(title_opts=opts.TitleOpts(title="Gauge-基本示例"))
        .render("仪表盘基本示例.html")
    )
    
  • 结果展示

7. 地理坐标 ( Geo )

  • 示例代码

    from pyecharts import options as opts
    from pyecharts.charts import Geo
    from pyecharts.globals import ChartType, SymbolType
    
    
    c = (
        Geo()
        .add_schema(maptype="china")
        .add(
            "",
            [("广州", 55), ("北京", 66), ("杭州", 77), ("重庆", 88)],
            type_=ChartType.EFFECT_SCATTER,
            color="white",
        )
        .add(
            "geo",
            [("广州", "上海"), ("广州", "北京"), ("广州", "杭州"), ("广州", "重庆")],
            type_=ChartType.LINES,
            effect_opts=opts.EffectOpts(
                symbol=SymbolType.ARROW, symbol_size=6, color="blue"
            ),
            linestyle_opts=opts.LineStyleOpts(curve=0.2),
        )
        .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
        .set_global_opts(title_opts=opts.TitleOpts(title="Geo-Lines"))
        .render("地理坐标示例.html")
    )
    
  • 结果展示

8. 关系图 ( Graph )

  • 示例代码

    from pyecharts import options as opts
    from pyecharts.charts import Graph
    
    
    nodes = [
        {"name": "结点1", "symbolSize": 10},
        {"name": "结点2", "symbolSize": 20},
        {"name": "结点3", "symbolSize": 30},
        {"name": "结点4", "symbolSize": 40},
        {"name": "结点5", "symbolSize": 50},
        {"name": "结点6", "symbolSize": 40},
        {"name": "结点7", "symbolSize": 30},
        {"name": "结点8", "symbolSize": 20},
    ]
    links = []
    for i in nodes:
        for j in nodes:
            links.append({"source": i.get("name"), "target": j.get("name")})
    c = (
        Graph()
        .add("", nodes, links, repulsion=8000)
        .set_global_opts(title_opts=opts.TitleOpts(title="Graph-基本示例"))
        .render("关系图基本示例.html")
    )
    
  • 结果展示

9. 水球图 ( Liquid )

  • 示例代码

    from pyecharts import options as opts
    from pyecharts.charts import Liquid
    
    
    c = (
        Liquid()
        .add("lq", [0.6, 0.7, 0.8], is_outline_show=False)
        .set_global_opts(title_opts=opts.TitleOpts(title="Liquid-无边框"))
        .render("无边框水球图示例.html")
    )
    
  • 结果展示

10. 表格组件 ( Table )

  • 示例代码

    from pyecharts.components import Table
    from pyecharts.options import ComponentTitleOpts
    
    
    table = Table()
    headers = ["City name", "Area", "Population", "Annual Rainfall"]
    rows = [
        ["Brisbane", 5905, 1857594, 1146.4],
        ["Adelaide", 1295, 1158259, 600.5],
        ["Darwin", 112, 120900, 1714.7],
        ["Hobart", 1357, 205556, 619.5],
        ["Sydney", 2058, 4336374, 1214.8],
        ["Melbourne", 1566, 3806092, 646.9],
        ["Perth", 5386, 1554769, 869.4],
    ]
    table.add(headers, rows)
    table.set_global_opts(
        title_opts=ComponentTitleOpts(title="Table-基本示例", subtitle="我是副标题支持换行哦")
    )
    table.render("表格组件示例.html")
    
  • 结果展示

11. 组合组件 ( Grid )

  • 示例代码

    from pyecharts import options as opts
    from pyecharts.charts import Bar, Grid, Line
    
    
    x_data = ["{}月".format(i) for i in range(1, 13)]
    bar = (
        Bar()
        .add_xaxis(x_data)
        .add_yaxis(
            "蒸发量",
            [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3],
            yaxis_index=0,
            color="#d14a61",
        )
        .add_yaxis(
            "降水量",
            [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3],
            yaxis_index=1,
            color="#5793f3",
        )
        .extend_axis(
            yaxis=opts.AxisOpts(
                name="蒸发量",
                type_="value",
                min_=0,
                max_=250,
                position="right",
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color="#d14a61")
                ),
                axislabel_opts=opts.LabelOpts(formatter="{value} ml"),
            )
        )
        .extend_axis(
            yaxis=opts.AxisOpts(
                type_="value",
                name="温度",
                min_=0,
                max_=25,
                position="left",
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color="#675bba")
                ),
                axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
                splitline_opts=opts.SplitLineOpts(
                    is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1)
                ),
            )
        )
        .set_global_opts(
            yaxis_opts=opts.AxisOpts(
                name="降水量",
                min_=0,
                max_=250,
                position="right",
                offset=80,
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color="#5793f3")
                ),
                axislabel_opts=opts.LabelOpts(formatter="{value} ml"),
            ),
            title_opts=opts.TitleOpts(title="Grid-多 Y 轴示例"),
            tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
        )
    )
    
    line = (
        Line()
        .add_xaxis(x_data)
        .add_yaxis(
            "平均温度",
            [2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2],
            yaxis_index=2,
            color="#675bba",
            label_opts=opts.LabelOpts(is_show=False),
        )
    )
    
    bar.overlap(line)
    grid = Grid()
    grid.add(bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True)
    grid.render("组合组件示例.html")
    
  • 结果展示

12. 时间轴组件 ( Timeline )

  • 示例代码

    from pyecharts import options as opts
    from pyecharts.charts import Bar, Timeline
    from pyecharts.faker import Faker
    
    
    x = Faker.choose()
    tl = Timeline()
    for i in range(2015, 2020):
        bar = (
            Bar()
            .add_xaxis(x)
            .add_yaxis("商家A", Faker.values())
            .add_yaxis("商家B", Faker.values())
            .set_global_opts(title_opts=opts.TitleOpts("某商店{}年营业额".format(i)))
        )
        tl.add(bar, "{}年".format(i))
    tl.render("时间轴组件示例.html")
    
  • 结果展示


四、Faker函数库与常见的配置项

1. Faker函数库

  • 类别数据

    clothes = ["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"]
    drinks = ["可乐", "雪碧", "橙汁", "绿茶", "奶茶", "百威", "青岛"]
    phones = ["小米", "三星", "华为", "苹果", "魅族", "VIVO", "OPPO"]
    fruits = ["草莓", "芒果", "葡萄", "雪梨", "西瓜", "柠檬", "车厘子"]
    animal = ["河马", "蟒蛇", "老虎", "大象", "兔子", "熊猫", "狮子"]
    cars = ["宝马", "法拉利", "奔驰", "奥迪", "大众", "丰田", "特斯拉"]
    dogs = ["哈士奇", "萨摩耶", "泰迪", "金毛", "牧羊犬", "吉娃娃", "柯基"]
    visual_color = [
        "#313695", "#4575b4", "#74add1", "#abd9e9", "#e0f3f8", "#ffffbf",
        "#fee090", "#fdae61", "#f46d43", "#d73027", "#a50026",
    ]
    
  • 时间数据

    week = ["周一", "周二", "周三", "周四", "周五", "周六", "周日"]
    week_en = "Saturday Friday Thursday Wednesday Tuesday Monday Sunday".split()
    clock = (
    	"12a 1a 2a 3a 4a 5a 6a 7a 8a 9a 10a 11a 12p "
    	"1p 2p 3p 4p 5p 6p 7p 8p 9p 10p 11p".split()
    )
    months = ["{}月".format(i) for i in range(1, 13)]
    days_attrs = ["{}天".format(i) for i in range(30)]
    days_values = [random.randint(1, 30) for _ in range(30)]
    
  • 地点数据

    provinces = ["广东", "北京", "上海", "江西", "湖南", "浙江", "江苏"]
    guangdong_city = ["汕头市", "汕尾市", "揭阳市", "阳江市", "肇庆市", "广州市", "惠州市"]
    country = ["China", "Canada", "Brazil", "Russia", "United States", "Africa", "Germany",
    ]
    
  • 随机生成数据的方法

    • choose:随机元素

      def choose(self) -> list:
          return random.choice(
              [
                  self.clothes,
                  self.drinks,
                  self.phones,
                  self.fruits,
                  self.animal,
                  self.dogs,
                  self.week,
              ]
          )
      
    • values:随机值

      @staticmethod
      def values(start: int = 20, end: int = 150) -> list:
          return [random.randint(start, end) for _ in range(7)]
      
    • rand_color:随机颜色

      @staticmethod
      def rand_color() -> str:
          return random.choice(
              [
                  "#c23531", "#2f4554", "#61a0a8", "#d48265", "#749f83", "#ca8622", "#bda29a", "#6e7074", "#546570", 
                  "#c4ccd3", "#f05b72", "#444693", "#726930", "#b2d235", "#6d8346", "#ac6767", "#1d953f", "#6950a1",
              ]
          )
      

2. set_global_opts (全局配置项)

2.1 初始化配置项

# width 图表画布宽度
# height 图表画布高度
# renderer 渲染风格:"canvas", "svg"
Bar(init_opts=opts.InitOpts(width="1200px", height="800px", renderer=RenderType.CANVAS, page_title="网页标题", bg_color="#24c92c"))

2.2 标题

# pos_left:title 组件离容器左侧的距离
Bar().set_global_opts(title_opts=opts.TitleOpts(title="主标题", subtitle="副标题", title_link="主标题链接", subtitle_link="主标题链接"), pos_left="20%")

2.3 图例

Bar().set_global_opts(legend_opts=opts.LegendOpts(type_="scroll", is_show=True, orient="vertical", pos_left="20%")

2.4 提示框

# trigger 触发类型 : 'item': 数据项图形触发,'axis': 坐标轴触发
# trigger_on 触发条件 : 'mousemove': 鼠标移动时触发,'click': 鼠标点击时触发,'mousemove|click': 同时
# axis_pointer_type 指示器类型 : line,shadow,cross,none
# hide_delay 浮层隐藏的延迟,单位为 ms
Bar().set_global_opts(tooltip_opts=opts.TooltipOpts(is_show=True, trigger="item", trigger_on="mousemove|click",axis_pointer_type=“line”, hide_delay=100)

2.5 工具箱

Bar().set_global_opts(toolbox_opts=opts.ToolboxOpts(is_show=True, orient="vertical", pos_left="20%", feature=ToolBoxFeatureOpts())
class ToolBoxFeatureOpts(
    # 保存为图片
    save_as_image: Union[ToolBoxFeatureSaveAsImageOpts, dict] = ToolBoxFeatureSaveAsImageOpts(),

    # 配置项还原    
    restore: Union[ToolBoxFeatureRestoreOpts, dict] = ToolBoxFeatureRestoreOpts(),

    # 数据视图工具,可以展现当前图表所用的数据,编辑后可以动态更新
    data_view: Union[ToolBoxFeatureDataViewOpts, dict] = ToolBoxFeatureDataViewOpts(),

    # 数据区域缩放。(目前只支持直角坐标系的缩放)
    data_zoom: Union[ToolBoxFeatureDataZoomOpts, dict] = ToolBoxFeatureDataZoomOpts(),

    # 动态类型切换。
    magic_type: Union[ToolBoxFeatureMagicTypeOpts, dict] = ToolBoxFeatureMagicTypeOpts(),

    # 选框组件的控制按钮。
    brush: Union[ToolBoxFeatureBrushOpts, dict] = ToolBoxFeatureBrushOpts(),
)

3. 系统配置项

3.1 文字样式配置项

title_textstyle_opts = opts.TextStyleOpts(color="red", font_style="italic", font_weight="bold", 
                                          font_family="Arial", font_size=11))
Bar().set_global_opts(title_opts=opts.TitleOpts(title="主标题", title_textstyle_opts= title_textstyle_opts)

3.2 标签配置项

# rotate 标签旋转。从 -90 度到 90 度。正值是逆时针
# formatter标签内容格式器 : {a}(系列名称),{b}(数据项名称),{c}(数值), {d}(百分比)
Bar().set_series_opts(label_opts=opts.LabelOpts(is_show=True, color=None, font_size=12, rotate=0, formatter="{b} : {d}%"))

3.3 线样式配置项

# opacity 透明度。支持从 0 到 1 的数字,为 0 时不绘制该图形
# curve 线的弯曲度,0 表示完全不弯曲
# type_ 线的类型 : 'solid', 'dashed', 'dotted'
Bar().set_series_opts(linestyle_opts=opts.LineStyleOpts(is_show=True, width=10, opacity=0.5, curve=0, type_="solid", color=None))

五、pyecharts与Web框架整合

pyecharts支持与Flask[1]、Sanic[2]、Tornado[3]和Django[4]框架整合在一起。

有兴趣的同学们可以去官网学习一下。


六、数据分析之pandas

1. 数据结构

  • Series:一维数组,与Numpy中的一维array类似。二者与Python基本的数据结构List也很相近。Series如今能保存不同种数据类型,字符串、boolean值、数字等都能保存在Series中。
  • Time- Series:以时间为索引的Series。
  • DataFrame:二维的表格型数据结构。很多功能与R中的data.frame类似。可以将DataFrame理解为Series的容器。
  • Panel :三维的数组,可以理解为DataFrame的容器。
  • Panel4D:是像Panel一样的4维数据容器。
  • PanelND:拥有factory集合,可以创建像Panel4D一样N维命名容器的模块。

2. 数据读取/输出

  • csv : pd.read_csv('data.csv')
  • excel : pd.read_excel('data.xlsx', index_col=0)
  • json : pd.read_json("data.json", encoding='utf-8', lines=True)
  • clipboard : pd.read_clipboard()
  • html : pd.read_html('data.html')
  • xml : pd.read_xml('data.xml')
  • sql : pd.read_sql('SELECT name, age FROM student', conn)

3. 数据处理

df = pd.DataFrame({
    'name': ['zhao', 'qian', 'sun', 'li', 'zhao'],
    'age': [10, 15, 22, 24, 33]
})
  • 去重 : df.drop_duplicates(subset=['name'])
  • 过滤 : df[df.age>15]
  • 统计 : df.value_counts(suset=['name'])
  • 排序 : df.sort_values(by='name', ascending=False)
  • 选取 : 某几行、某几列(atiatlociloc
  • 分组 : df.groupby(by="age").mean()
  • 合并和拼接 : merge/concat


  1. Flask是一个轻量级的可定制框架,使用Python语言编写,较其他同类型框架更为灵活、轻便、安全且容易上手。主要特征是核心构成比较简单,但具有很强的扩展性和兼容性。 ↩︎

  2. Sanic是一个支持 async/await 语法的异步非阻塞Web框架,优势在于速度。 ↩︎

  3. Tornado是一个轻量级的异步非阻塞Web框架,性能优越。 ↩︎

  4. Django是一个开放源代码的重量级Web应用框架,功能齐全,能大大提高开发效率。 ↩︎

posted @ 2021-09-07 02:02  ccneko  阅读(2505)  评论(0编辑  收藏  举报