Java操作Mongo入门
参考:
http://api.mongodb.com/java/3.2/
http://www.runoob.com/mongodb/mongodb-java.html
https://docs.mongodb.com/manual/
=====================================================================
1.dependency
<dependency>
<groupId>org.mongodb</groupId>
<artifactId>mongo-java-driver</artifactId>
<version>3.2.2</version>
</dependency>
2.连接Mongo
2.1.无用户名密码验证
//连接"localhost:27017"可以直接使用无参构造new MongoClient(); MongoClient mongoClient = new MongoClient( "localhost" , 27017 );
2.2.需要用户名密码验证
//连接到MongoDB服务 如果是远程连接可以替换“localhost”为服务器所在IP地址 //ServerAddress()两个参数分别为 服务器地址 和 端口 ServerAddress serverAddress = new ServerAddress("localhost",27017); List<ServerAddress> addrs = new ArrayList<ServerAddress>(); addrs.add(serverAddress); //MongoCredential.createScramSha1Credential()三个参数分别为 用户名 数据库名称 密码 MongoCredential credential = MongoCredential.createScramSha1Credential("username", "databaseName", "password".toCharArray()); List<MongoCredential> credentials = new ArrayList<MongoCredential>(); credentials.add(credential); //通过连接认证获取MongoDB连接 MongoClient mongoClient = new MongoClient(addrs,credentials);
3.获取操作数据库/不存在会创建
MongoDatabase db = mongoClient.getDatabase("mydb");
4.创建集合
Mongo中的集合,可以看做是数据库中的表。
db.createCollection("user");
5.获得指定集合,并遍历所有数据
MongoCollection<Document> users = db.getCollection("user"); FindIterable<Document> documents = users.find(); for (Document document : documents) { System.out.println(document); }
6.查询
6.1 通过Document查询条件
//查找所有name = csc的document Document query1 = new Document("name", "csc"); FindIterable<Document> documents = users.find(query1); for (Document d : documents) { System.out.println(d.toJson()); }
使用运算符“$lt”,"$gt","$lte","$gte"
//age < 25 Document query2 = new Document("age", new Document("$lt", 25)); FindIterable<Document> documents = users.find(query2);
and连接多个条件
Document query3 = new Document("age", new Document("$lt", 25)).append("name", "csc"); FindIterable<Document> documents = users.find(query3); 也可以: Document query4 = new Document("name", "csc"); query4.put("age", new Document("$lt", 25)); FindIterable<Document> documents = users.find(query4);
or连接多个条件
//name = csc || name == dqr Document query5 = new Document("$or", Arrays.asList(new Document("name", "csc"), new Document("name", "dqr"))); FindIterable<Document> documents = users.find(query5);
between...and...
//如果这样写,会值返回age > 20的document,因为后面一个key为"age"的把前面一个覆盖了。 Document query6 = new Document("age", new Document("$lt", 23)).append("age", new Document("$gt", 20)); FindIterable<Document> documents = users.find(query6); //正确写法: Document query6 = new Document("age", new Document("$lt", 23).append("$gt", 20)); FindIterable<Document> documents = user.find(query6);
6.2 通过Filters指定查询条件(更简洁的做法)
相等:eq
FindIterable<Document> documents = user.find(Filters.eq("name", "csc"));
不等:ne、lt、lte、gt、gte
FindIterable<Document> documents = user.find(Filters.lte("age", 23));
in:
FindIterable<Document> documents = user.find(Filters.in("age", Arrays.asList(23,25,27)));
and:
Bson and = Filters.and(Filters.eq("name", "csc"), Filters.ne("age", 25)); FindIterable<Document> documents = user.find(and);
or:
FindIterable<Document> documents = user.find(Filters.or(Filters.eq("age",23),Filters.eq("age", 25)));
6.3 count
long cnt = user.count(Filters.eq("age", 27)); System.out.println(cnt);
6.4 sort
//按name升序 FindIterable<Document> documents = user.find().sort(Sorts.ascending("name")); //按age将序 FindIterable<Document> documents = user.find().sort(Sorts.descending("age")); //按name升序,name相同的按age降序 FindIterable<Document> documents = user.find().sort(Sorts.orderBy(Sorts.ascending("name"), Sorts.descending("age")));
6.5 skipe & limit
//跳过前5条(0-4),返回(5-9)共5条。 FindIterable<Document> documents = user.find().sort(Sorts.descending("age")).skip(5).limit(5);
6.6 distinct
DistinctIterable<String> name = user.distinct("name", String.class); DistinctIterable<Integer> age = user.distinct("age", Integer.class); for (Integer a : age) { System.out.println(a); } for (String s : name) { System.out.println(s); }
7.添加document
7.1添加单个document
Document doc = new Document(); doc.put("name", "zhangsan"); doc.put("age", 40); user.insertOne(doc);
7.2添加多个文档
List<Document> docs = new LinkedList<Document>(); for(int i=0; i<10; i++){ Document doc = new Document(); doc.put("name", "zhangsan"+i); doc.put("age", 40+i); docs.add(doc); } user.insertMany(docs);
8.修改document
updateOne/updateMany:
user.updateMany(Filters.eq("age", 25), new Document("$set", new Document("age", 16).append("name","xxx25")));
9.删除document
deleteOne/deleteMany:
//删除第一个符合条件的 user.deleteOne(Filters.eq("age", 17)); //删除所有符合条件的 user.deleteMany(Filters.eq("age", 17));
10.aggregate
以流水线的方式,分阶段处理document。
主要阶段:
$project
对流入的每个document进行投影操作,类似于select field1, field2, ...
可以添加新字段、或删除已存在的某些字段。
MongoClient mongo = new MongoClient(); MongoDatabase db = mongo.getDatabase("test"); MongoCollection<Document> hobby = db.getCollection("student"); hobby.insertOne(new Document("name", "csc").append("hobby", Arrays.asList("reading", "coding"))); hobby.insertOne(new Document("name", "nicky").append("hobby", Arrays.asList("game"))); hobby.insertOne(new Document("name", "jack").append("hobby", Arrays.asList("movie"))); hobby.insertOne(new Document("name", "tom").append("hobby", Arrays.asList("reading", "coding"))); hobby.insertOne(new Document("name", "lucy").append("hobby", Arrays.asList("reading", "football"))); hobby.insertOne(new Document("name", "lion").append("hobby", Arrays.asList("basketball", "football"))); AggregateIterable<Document> aggregate = hobby.aggregate(Arrays.asList(new Document("$project", new Document("name", 1).append("_id", 0).append("hobby", 1)))); for (Document document : aggregate) { System.out.println(document.toJson()); }
只有_id默认输出的,不想输出该字段,需要设置为0,需要输出的其他字段需要手动设置为1.
输出结果:
{ "name" : "csc", "hobby" : ["reading", "coding"] } { "name" : "nicky", "hobby" : ["game"] } { "name" : "jack", "hobby" : ["movie"] } { "name" : "tom", "hobby" : ["reading", "coding"] } { "name" : "lucy", "hobby" : ["reading", "football"] } { "name" : "lion", "hobby" : ["basketball", "football"] }
$match
类似于where字句
AggregateIterable<Document> aggregate = hobby.aggregate(Arrays.asList( new Document("$project", new Document("name",1).append("_id", 0).append("hobby", 1)) ,new Document("$match", new Document("name", "csc")) ));
输出结果:
{ "name" : "csc", "hobby" : ["reading", "coding"] }
$limit & $skip同上面的用法
$unwind
把数组中的元素拆分为多个document。
AggregateIterable<Document> aggregate = hobby.aggregate(Arrays.asList( new Document("$project", new Document("name", 1).append("_id", 0).append("hobby", 1)) ,new Document("$unwind", "$hobby") ));
输出结果:
{ "name" : "csc", "hobby" : "reading" } { "name" : "csc", "hobby" : "coding" } { "name" : "nicky", "hobby" : "game" } { "name" : "jack", "hobby" : "movie" } { "name" : "tom", "hobby" : "reading" } { "name" : "tom", "hobby" : "coding" } { "name" : "lucy", "hobby" : "reading" } { "name" : "lucy", "hobby" : "football" } { "name" : "lion", "hobby" : "basketball" } { "name" : "lion", "hobby" : "football" }
$group
类似于group by,可以使用各种聚合操作符,常用的有:
$sum, $avg, $max, $min, $first, $last
//计算每个hobby的人数 AggregateIterable<Document> aggregate = hobby.aggregate(Arrays.asList( new Document("$project", new Document("name", 1).append("_id", 0).append("hobby", 1)) ,new Document("$unwind", "$hobby") ,new Document("$group", new Document("_id", "$hobby").append("count", new Document("$sum", 1))) ));
必须首先设置("_id", "$hobby"),这句的含义是group by hobby这个字段。引用字段一定要添加$打头。
如:输出每个hobby的第一个name: ("$fisrt","$name")。
AggregateIterable<Document> aggregate = hobby.aggregate(Arrays.asList( new Document("$project", new Document("name", 1).append("_id", 0).append("hobby", 1)) ,new Document("$unwind", "$hobby") ,new Document("$group", new Document("_id", "$hobby").append("count", new Document("$sum", 1)).append("first", new Document("$first", "$name"))) ));
输出结果:
{ "_id" : "basketball", "count" : 1, "first" : "lion" } { "_id" : "football", "count" : 2, "first" : "lucy" } { "_id" : "movie", "count" : 1, "first" : "jack" } { "_id" : "game", "count" : 1, "first" : "nicky" } { "_id" : "coding", "count" : 2, "first" : "csc" } { "_id" : "reading", "count" : 3, "first" : "csc" }
11.mapreduce
map function
function() { ...//自定义操作 emit(key, value); }
文档中的说明:
- In the map function, reference the current document as this within the function.
- The map function should not access the database for any reason.
- The map function should be pure, or have no impact outside of the function (i.e. side effects.)
- A single emit can only hold half of MongoDB’s maximum BSON document size.
- The map function may optionally call emit(key,value) any number of times to create an output document associating key with value.
reduce function
function(key, values) { ...//自定义操作 return result; }
文档中的说明:
- The reduce function should not access the database, even to perform read operations.
- The reduce function should not affect the outside system.
- MongoDB will not call the reduce function for a key that has only a single value. The values argument is an array whose elements are the value objects that are “mapped” to the key.
- MongoDB can invoke the reduce function more than once for the same key. In this case, the previous output from the reduce function for that key will become one of the input values to the next reduce function invocation for that key.
- The reduce function can access the variables defined in the scope parameter.
- The inputs to reduce must not be larger than half of MongoDB’s maximum BSON document size. This requirement may be violated when large documents are returned and then joined together in subsequent reduce steps.
mapreduce demo
//统计每个年龄的人数,原理同hadoop中的map、reduce方法。 //定义一个js function,以年龄作为key,进行计数。this表示当前document String map = "function(){emit(this.age, 1)}";//age : [1,1,1,1] //js function, 对年龄的所有计数,累加返回key-value String reduce = "function(key, values){ return Array.sum(values)}"; MapReduceIterable<Document> docs = user.mapReduce(map, reduce); for (Document doc : docs) { System.out.println(doc.toJson()); }
转载自:http://www.cnblogs.com/dqrcsc/p/6031389.html
确实写的很不错! 所以收集一下该文章了
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 分享 3 个 .NET 开源的文件压缩处理库,助力快速实现文件压缩解压功能!
· Ollama——大语言模型本地部署的极速利器
· DeepSeek如何颠覆传统软件测试?测试工程师会被淘汰吗?