Notes: sensitivity & specificity
>**terminology**:
*True positive* (TP);
*False positive* (FP): originally negative;
*True negative* (TN);
*False negative* (FN): originally positive;
True positive rate (TPR, Sensitivity): TP / (TP + FN);
True negative rate (TNR, Specificity): TN / (TN + FP) = 1 - FPR;
False positive rate (FPR): FP / (FP + TN) = FP / N;
Accuracy (classifier) : (TP + TN) / (P + N).
Type 1 error: incorrectly reject the true value, increase as alpha increases;
Type 2 error: incorrectly accept the false value, increase as alpha decreases.
【推荐】还在用 ECharts 开发大屏?试试这款永久免费的开源 BI 工具!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步