题目:输入一个整形数组,数组里有正数也有负数。数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。求所有子数组的和的最大值。要求时间复杂度为O(n)

例如输入的数组为1, -2, 3, 10, -4, 7, 2, -5,和最大的子数组为3, 10, -4, 7, 2,因此输出为该子数组的和18

分析:本题最初为2005年浙江大学计算机系的考研题的最后一道程序设计题,在2006年里包括google在内的很多知名公司都把本题当作面试题。由于本题在网络中广为流传,本题也顺利成为2006年程序员面试题中经典中的经典。

如果不考虑时间复杂度,我们可以枚举出所有子数组并求出他们的和。不过非常遗憾的是,由于长度为n的数组有O(n2)个子数组;而且求一个长度为n的数组的和的时间复杂度为O(n)。因此这种思路的时间是O(n3)

很容易理解,当我们加上一个正数时,和会增加;当我们加上一个负数时,和会减少。如果当前得到的和是个负数,那么这个和在接下来的累加中应该抛弃并重新清零,不然的话这个负数将会减少接下来的和。基于这样的思路,我们可以写出如下代码。

参考代码:

/////////////////////////////////////////////////////////////////////////////
// Find the greatest sum of all sub-arrays
// Return value: if the input is valid, return true, otherwise return false
/////////////////////////////////////////////////////////////////////////////
bool FindGreatestSumOfSubArray
(
      int *pData,           // an array
      unsigned int nLength, // the length of array
      int &nGreatestSum     // the greatest sum of all sub-arrays
)
{
      // if the input is invalid, return false
      if((pData == NULL) || (nLength == 0))
            return false;

      int nCurSum = nGreatestSum = 0;
      for(unsigned int i = 0; i < nLength; ++i)
      {
            nCurSum += pData[i];

            // if the current sum is negative, discard it
            if(nCurSum < 0)
                  nCurSum = 0;

            // if a greater sum is found, update the greatest sum
            if(nCurSum > nGreatestSum)
                  nGreatestSum = nCurSum;

      }


      // if all data are negative, find the greatest element in the array
      if(nGreatestSum == 0)
      {
            nGreatestSum = pData[0];
            for(unsigned int i = 1; i < nLength; ++i)
            {
                  if(pData[i] > nGreatestSum)
                        nGreatestSum = pData[i];
            }
      }

      return true;
}

 

讨论:上述代码中有两点值得和大家讨论一下:

·         函数的返回值不是子数组和的最大值,而是一个判断输入是否有效的标志。如果函数返回值的是子数组和的最大值,那么当输入一个空指针是应该返回什么呢?返回0?那这个函数的用户怎么区分输入无效和子数组和的最大值刚好是0这两中情况呢?基于这个考虑,本人认为把子数组和的最大值以引用的方式放到参数列表中,同时让函数返回一个函数是否正常执行的标志。

·         输入有一类特殊情况需要特殊处理。当输入数组中所有整数都是负数时,子数组和的最大值就是数组中的最大元素。

《编程珠机》第八章,8.4扫描算法。

采用类似分治算法的道理:前i个元素中,最大综合子数组要么在i-1个元素中(maxsofar),要么截止到位置i(maxendinghere)。