JDK动态代理实现原理

平时接触动态代理比较多,例如Spring等框架如何使用了动态代理经常听到,本文主要介绍JDK动态代理的基本实现原理(JDK8版本),当了解了这些实现细节后,再次使用动态代理就会十分容易和清楚,知其然也知其所以然。

动态代理Demo

先来看一下利用JDK动态代理写的Demo,下面会根据这个Demo进行分析

首先定义一个接口

public interface Calculator {
int add(int a, int b);
int sub(int a, int b);
int mul(int a, int b);
int div(int a, int b);
}

然后是上面接口的实现类

public class CalculatorImpl implements Calculator {
@Override
public int add(int a, int b) {
System.out.println(a+b);
return a+b;
}
@Override
public int sub(int a, int b) {
return a-b;
}
@Override
public int mul(int a, int b) {
return a*b;
}
@Override
public int div(int a, int b) {
return a/b;
}
}

现在有个需求,就是在每个方法执行前后都实现一段逻辑,这个时候就要用到JDK的动态代理了。

我们首先定义一个类实现InvocationHandler接口,将要代理的对象通过构造方法传入,并实现invoke方法。

public class MyProxyHandler implements InvocationHandler {
//要代理的对象
private Calculator target;
public MyProxyHandler(Calculator h) {
this.target = h;
}
@Override
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
//获取参数
System.out.println("beginWith---方法的参数是--" + Arrays.asList(args));
before();
Object result = method.invoke(target,args);
after();
return result;
}
/**
* 前置
*/
public void before() {
System.out.println("before---");
}
/**
* 后置
*/
public void after() {
System.out.println("after---");
}
}

最后我们利用JDK提供的Proxy类来实现我们想要的功能

/**
* jdk动态代理测试
* @author mingshan
*
*/
public class Test {
public static void main(String[] args) {
Calculator target = new CalculatorImpl();
Calculator proxy = (Calculator) Proxy.newProxyInstance(Calculator.class.getClassLoader(),
new Class<?>[]{Calculator.class},
new MyProxyHandler(target));
proxy.add(1, 2);
}
}

具体实现流程

动态代理之所以被称为动态代理,那是因为代理类是在运行过程中被Java动态生成的,我们可以看到这个被生成的代理类,需要在运行运行配置加上-Dsun.misc.ProxyGenerator.saveGeneratedFiles=true这个虚拟机参数,那么就会在当前项目com.sun.proxy包路径下生成$Proxy0.class这个class文件,其中文件名的数字是可变的。

image

代理类生成的过程主要包括两部分:

  • 代理类字节码生成
  • 把字节码通过传入的类加载器加载到虚拟机中

我们首先从Proxy类的newProxyInstance方法入手,开始分析实现流程。

public static Object newProxyInstance(ClassLoader loader,
Class<?>[] interfaces,
InvocationHandler h)
throws IllegalArgumentException
{
// 检查空指针异常
Objects.requireNonNull(h);
final Class<?>[] intfs = interfaces.clone();
// 安全检查
final SecurityManager sm = System.getSecurityManager();
if (sm != null) {
checkProxyAccess(Reflection.getCallerClass(), loader, intfs);
}
// 生成代理类
Class<?> cl = getProxyClass0(loader, intfs);
/*
* Invoke its constructor with the designated invocation handler.
*/
try {
if (sm != null) {
checkNewProxyPermission(Reflection.getCallerClass(), cl);
}
final Constructor<?> cons = cl.getConstructor(constructorParams);
final InvocationHandler ih = h;
if (!Modifier.isPublic(cl.getModifiers())) {
AccessController.doPrivileged(new PrivilegedAction<Void>() {
public Void run() {
cons.setAccessible(true);
return null;
}
});
}
return cons.newInstance(new Object[]{h});
} catch (IllegalAccessException|InstantiationException e) {
throw new InternalError(e.toString(), e);
} catch (InvocationTargetException e) {
Throwable t = e.getCause();
if (t instanceof RuntimeException) {
throw (RuntimeException) t;
} else {
throw new InternalError(t.toString(), t);
}
} catch (NoSuchMethodException e) {
throw new InternalError(e.toString(), e);
}
}

newProxyInstance方法需要三个参数,分别是类加载器,接口类型的数组和自定义的InvocationHandler。首选会检测空指针异常和安全检查,然后调用getProxyClass0方法,getProxyClass0源码如下:

private static Class<?> getProxyClass0(ClassLoader loader,
Class<?>... interfaces) {
if (interfaces.length > 65535) {
throw new IllegalArgumentException("interface limit exceeded");
}
// If the proxy class defined by the given loader implementing
// the given interfaces exists, this will simply return the cached copy;
// otherwise, it will create the proxy class via the ProxyClassFactory
return proxyClassCache.get(loader, interfaces);
}

代码里面的注释很清楚,如果实现当前接口的代理类存在,直接从缓存中返回,如果不存在,则通过ProxyClassFactory来创建。这里可以明显看到有对interface接口数量的限制,不能超过65535。其中proxyClassCache具体初始化信息如下:

proxyClassCache = new WeakCache<>(new KeyFactory(), new ProxyClassFactory());

其中创建代理类的具体逻辑是通过ProxyClassFactory的apply方法来创建的,ProxyClassFactory类中还包含代理类名称生成相关的两个静态常量,源码如下:

// prefix for all proxy class names
private static final String proxyClassNamePrefix = "$Proxy";
// next number to use for generation of unique proxy class names
private static final AtomicLong nextUniqueNumber = new AtomicLong();
@Override
public Class<?> apply(ClassLoader loader, Class<?>[] interfaces) {
Map<Class<?>, Boolean> interfaceSet = new IdentityHashMap<>(interfaces.length);
for (Class<?> intf : interfaces) {
/*
* Verify that the class loader resolves the name of this
* interface to the same Class object.
*/
Class<?> interfaceClass = null;
try {
interfaceClass = Class.forName(intf.getName(), false, loader);
} catch (ClassNotFoundException e) {
}
if (interfaceClass != intf) {
throw new IllegalArgumentException(
intf + " is not visible from class loader");
}
/*
* Verify that the Class object actually represents an
* interface.
*/
if (!interfaceClass.isInterface()) {
throw new IllegalArgumentException(
interfaceClass.getName() + " is not an interface");
}
/*
* Verify that this interface is not a duplicate.
*/
if (interfaceSet.put(interfaceClass, Boolean.TRUE) != null) {
throw new IllegalArgumentException(
"repeated interface: " + interfaceClass.getName());
}
}
String proxyPkg = null; // package to define proxy class in
int accessFlags = Modifier.PUBLIC | Modifier.FINAL;
/*
* Record the package of a non-public proxy interface so that the
* proxy class will be defined in the same package. Verify that
* all non-public proxy interfaces are in the same package.
*/
for (Class<?> intf : interfaces) {
int flags = intf.getModifiers();
if (!Modifier.isPublic(flags)) {
accessFlags = Modifier.FINAL;
String name = intf.getName();
int n = name.lastIndexOf('.');
String pkg = ((n == -1) ? "" : name.substring(0, n + 1));
if (proxyPkg == null) {
proxyPkg = pkg;
} else if (!pkg.equals(proxyPkg)) {
throw new IllegalArgumentException(
"non-public interfaces from different packages");
}
}
}
if (proxyPkg == null) {
// if no non-public proxy interfaces, use com.sun.proxy package
proxyPkg = ReflectUtil.PROXY_PACKAGE + ".";
}
/*
* Choose a name for the proxy class to generate.
*/
long num = nextUniqueNumber.getAndIncrement();
String proxyName = proxyPkg + proxyClassNamePrefix + num;
/*
* Generate the specified proxy class.
*/
byte[] proxyClassFile = ProxyGenerator.generateProxyClass(
proxyName, interfaces, accessFlags);
try {
return defineClass0(loader, proxyName,
proxyClassFile, 0, proxyClassFile.length);
} catch (ClassFormatError e) {
/*
* A ClassFormatError here means that (barring bugs in the
* proxy class generation code) there was some other
* invalid aspect of the arguments supplied to the proxy
* class creation (such as virtual machine limitations
* exceeded).
*/
throw new IllegalArgumentException(e.toString());
}
}

apply方法需要两个参数,类加载器和接口类型的数组。该方法包含验证类加载器和接口相关逻辑,包名的创建逻辑,调用ProxyGenerator. generateProxyClass生成代理类,把代理类字节码加载到JVM。

  1. 包名默认是com.sun.proxy,如果被代理类是 non-public proxy interface ,则用和被代理类接口一样的包名,类名默认是ProxyProxy0,$Proxy1。
  2. 包名类名准备好后,就是通过ProxyGenerator.generateProxyClass根据具体传入的接口创建代理字节码,-Dsun.misc.ProxyGenerator.saveGeneratedFiles=true 这个VM参数就是在该方法起到作用,如果为true则保存字节码到磁盘。代理类中,所有的代理方法逻辑都一样都是调用invocationHander的invoke方法,这个我们可以看后面具体代理反编译结果。
  3. 把字节码通过传入的类加载器加载到JVM中: defineClass0(loader, proxyName,proxyClassFile, 0, proxyClassFile.length);。

我们继续来看看generateProxyClass方法是如何实现的,下面是该类的源码

public static byte[] generateProxyClass(final String var0, Class<?>[] var1, int var2) {
ProxyGenerator var3 = new ProxyGenerator(var0, var1, var2);
// 生成代理类字节码文件的真正方法
final byte[] var4 = var3.generateClassFile();
// 保存文件操作
if (saveGeneratedFiles) {
AccessController.doPrivileged(new PrivilegedAction<Void>() {
public Void run() {
try {
int var1 = var0.lastIndexOf(46);
Path var2;
if (var1 > 0) {
Path var3 = Paths.get(var0.substring(0, var1).replace('.', File.separatorChar));
Files.createDirectories(var3);
var2 = var3.resolve(var0.substring(var1 + 1, var0.length()) + ".class");
} else {
var2 = Paths.get(var0 + ".class");
}
Files.write(var2, var4, new OpenOption[0]);
return null;
} catch (IOException var4x) {
throw new InternalError("I/O exception saving generated file: " + var4x);
}
}
});
}
return var4;
}

generateProxyClass方法中,通过调用ProxyGenerator类的generateClassFile方法,来生成代理类字节码文件,然后保存文件。

接下来我们看看generateClassFile方法干了些什么,下面是该方法的源码(方法有点长~):

private byte[] generateClassFile() {
// addProxyMethod系列方法就是将接口的方法和Object的hashCode,equals,toString方法添加到代理方法Map(proxyMethods),
// 其中方法签名作为key,proxyMethod作为value
// 后面经过反编译生成的代理类看出,hashCode,equals,toString这三个方法相当于从Object拿过来,
// m0 = Class.forName("java.lang.Object").getMethod("hashCode", new Class[0]);
this.addProxyMethod(hashCodeMethod, Object.class);
this.addProxyMethod(equalsMethod, Object.class);
this.addProxyMethod(toStringMethod, Object.class);
Class[] var1 = this.interfaces;
int var2 = var1.length;
int var3;
Class var4;
// 获得所有接口中的所有方法,并将方法添加到代理方法中
for(var3 = 0; var3 < var2; ++var3) {
var4 = var1[var3];
Method[] var5 = var4.getMethods();
int var6 = var5.length;
for(int var7 = 0; var7 < var6; ++var7) {
Method var8 = var5[var7];
this.addProxyMethod(var8, var4);
}
}
// 迭代存储在map中的ProxyMethod
Iterator var11 = this.proxyMethods.values().iterator();
List var12;
while(var11.hasNext()) {
var12 = (List)var11.next();
checkReturnTypes(var12);
}
Iterator var15;
try {
// 生成代理类的构造函数
this.methods.add(this.generateConstructor());
var11 = this.proxyMethods.values().iterator();
while(var11.hasNext()) {
var12 = (List)var11.next();
var15 = var12.iterator();
while(var15.hasNext()) {
ProxyGenerator.ProxyMethod var16 = (ProxyGenerator.ProxyMethod)var15.next();
// 向代理类添加字段
// 将代理字段声明为Method,10为ACC_PRIVATE和ACC_STATAIC的与运算,表示该字段的修饰符为private static
// 所以代理类的字段都是private static Method XXX
this.fields.add(new ProxyGenerator.FieldInfo(var16.methodFieldName, "Ljava/lang/reflect/Method;", 10));
// 向代理类添加方法
this.methods.add(var16.generateMethod());
}
}
// 为代理类生成静态代码块,对一些字段进行初始化
this.methods.add(this.generateStaticInitializer());
} catch (IOException var10) {
throw new InternalError("unexpected I/O Exception", var10);
}
// 限制方法和字段数量
if (this.methods.size() > 65535) {
throw new IllegalArgumentException("method limit exceeded");
} else if (this.fields.size() > 65535) {
throw new IllegalArgumentException("field limit exceeded");
} else {
this.cp.getClass(dotToSlash(this.className));
this.cp.getClass("java/lang/reflect/Proxy");
var1 = this.interfaces;
var2 = var1.length;
for(var3 = 0; var3 < var2; ++var3) {
var4 = var1[var3];
this.cp.getClass(dotToSlash(var4.getName()));
}
this.cp.setReadOnly();
ByteArrayOutputStream var13 = new ByteArrayOutputStream();
DataOutputStream var14 = new DataOutputStream(var13);
try {
var14.writeInt(-889275714);
var14.writeShort(0);
var14.writeShort(49);
this.cp.write(var14);
var14.writeShort(this.accessFlags);
var14.writeShort(this.cp.getClass(dotToSlash(this.className)));
var14.writeShort(this.cp.getClass("java/lang/reflect/Proxy"));
var14.writeShort(this.interfaces.length);
Class[] var17 = this.interfaces;
int var18 = var17.length;
for(int var19 = 0; var19 < var18; ++var19) {
Class var22 = var17[var19];
var14.writeShort(this.cp.getClass(dotToSlash(var22.getName())));
}
var14.writeShort(this.fields.size());
var15 = this.fields.iterator();
while(var15.hasNext()) {
ProxyGenerator.FieldInfo var20 = (ProxyGenerator.FieldInfo)var15.next();
var20.write(var14);
}
var14.writeShort(this.methods.size());
var15 = this.methods.iterator();
while(var15.hasNext()) {
ProxyGenerator.MethodInfo var21 = (ProxyGenerator.MethodInfo)var15.next();
var21.write(var14);
}
var14.writeShort(0);
return var13.toByteArray();
} catch (IOException var9) {
throw new InternalError("unexpected I/O Exception", var9);
}
}
}

那么自定义的InvocationHandler是如何在代理中使用的呢? 在上面的方法中向代理类添加方法调用了generateMethod()方法,所以这个添加方法的步骤就是在generateMethod()方法中实现的。
由于这个方法太长,这里就不贴全部代码了,方法里面有一段代码如下:

var9.writeShort(ProxyGenerator.this.cp.getFieldRef("java/lang/reflect/Proxy", "h", "Ljava/lang/reflect/InvocationHandler;"));

原来在代理方法中通过Proxy类引用了自定义InvocationHandler,由于通过Proxy的newProxyInstance方法将InvocationHandler传入,生成的代理类通过继承Proxy类,拿到InvocationHandler,
最后调用invoke方法来实现。

明白了JDK动态代理的大致流程,让我们来反编译下生成的代理类,反编译后的$Proxy0.java的代码如下:

package com.sun.proxy;
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
import java.lang.reflect.UndeclaredThrowableException;
import me.mingshan.dy.Calculator;
public final class $Proxy0 extends Proxy implements Calculator {
private static Method m1;
private static Method m2;
private static Method m5;
private static Method m3;
private static Method m4;
private static Method m6;
private static Method m0;
public $Proxy0(InvocationHandler var1) throws {
super(var1);
}
public final boolean equals(Object var1) throws {
try {
return ((Boolean)super.h.invoke(this, m1, new Object[]{var1})).booleanValue();
} catch (RuntimeException | Error var3) {
throw var3;
} catch (Throwable var4) {
throw new UndeclaredThrowableException(var4);
}
}
public final String toString() throws {
try {
return (String)super.h.invoke(this, m2, (Object[])null);
} catch (RuntimeException | Error var2) {
throw var2;
} catch (Throwable var3) {
throw new UndeclaredThrowableException(var3);
}
}
public final int mul(int var1, int var2) throws {
try {
return ((Integer)super.h.invoke(this, m5, new Object[]{Integer.valueOf(var1), Integer.valueOf(var2)})).intValue();
} catch (RuntimeException | Error var4) {
throw var4;
} catch (Throwable var5) {
throw new UndeclaredThrowableException(var5);
}
}
public final int add(int var1, int var2) throws {
try {
return ((Integer)super.h.invoke(this, m3, new Object[]{Integer.valueOf(var1), Integer.valueOf(var2)})).intValue();
} catch (RuntimeException | Error var4) {
throw var4;
} catch (Throwable var5) {
throw new UndeclaredThrowableException(var5);
}
}
public final int sub(int var1, int var2) throws {
try {
return ((Integer)super.h.invoke(this, m4, new Object[]{Integer.valueOf(var1), Integer.valueOf(var2)})).intValue();
} catch (RuntimeException | Error var4) {
throw var4;
} catch (Throwable var5) {
throw new UndeclaredThrowableException(var5);
}
}
public final int div(int var1, int var2) throws {
try {
return ((Integer)super.h.invoke(this, m6, new Object[]{Integer.valueOf(var1), Integer.valueOf(var2)})).intValue();
} catch (RuntimeException | Error var4) {
throw var4;
} catch (Throwable var5) {
throw new UndeclaredThrowableException(var5);
}
}
public final int hashCode() throws {
try {
return ((Integer)super.h.invoke(this, m0, (Object[])null)).intValue();
} catch (RuntimeException | Error var2) {
throw var2;
} catch (Throwable var3) {
throw new UndeclaredThrowableException(var3);
}
}
static {
try {
m1 = Class.forName("java.lang.Object").getMethod("equals", new Class[]{Class.forName("java.lang.Object")});
m2 = Class.forName("java.lang.Object").getMethod("toString", new Class[0]);
m5 = Class.forName("me.mingshan.dy.Calculator").getMethod("mul", new Class[]{Integer.TYPE, Integer.TYPE});
m3 = Class.forName("me.mingshan.dy.Calculator").getMethod("add", new Class[]{Integer.TYPE, Integer.TYPE});
m4 = Class.forName("me.mingshan.dy.Calculator").getMethod("sub", new Class[]{Integer.TYPE, Integer.TYPE});
m6 = Class.forName("me.mingshan.dy.Calculator").getMethod("div", new Class[]{Integer.TYPE, Integer.TYPE});
m0 = Class.forName("java.lang.Object").getMethod("hashCode", new Class[0]);
} catch (NoSuchMethodException var2) {
throw new NoSuchMethodError(var2.getMessage());
} catch (ClassNotFoundException var3) {
throw new NoClassDefFoundError(var3.getMessage());
}
}
}

代理类的结构大致如下:

  • 静态字段:被代理的接口所有方法都有一个对应的静态方法变量;
  • 静态块:主要是通过反射初始化静态方法变量;
  • 具体每个代理方法:逻辑都差不多就是h.invoke,主要是调用我们自定义的InvocatinoHandler逻辑,触发目标对象target上对应的方法;
  • 构造函数:从这里传入我们InvocationHandler逻辑

参考:

JDK动态代理详解

深度剖析JDK动态代理机制


title: JDK动态代理实现原理
tags: [动态代理,java]
author: Mingshan
categories: Java
date: 2018-7-10

posted @   mingshan  阅读(373)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)
点击右上角即可分享
微信分享提示