JDK动态代理实现原理
平时接触动态代理比较多,例如Spring等框架如何使用了动态代理经常听到,本文主要介绍JDK动态代理的基本实现原理(JDK8版本),当了解了这些实现细节后,再次使用动态代理就会十分容易和清楚,知其然也知其所以然。
动态代理Demo
先来看一下利用JDK动态代理写的Demo,下面会根据这个Demo进行分析
首先定义一个接口
public interface Calculator { int add(int a, int b); int sub(int a, int b); int mul(int a, int b); int div(int a, int b); }
然后是上面接口的实现类
public class CalculatorImpl implements Calculator { @Override public int add(int a, int b) { System.out.println(a+b); return a+b; } @Override public int sub(int a, int b) { return a-b; } @Override public int mul(int a, int b) { return a*b; } @Override public int div(int a, int b) { return a/b; } }
现在有个需求,就是在每个方法执行前后都实现一段逻辑,这个时候就要用到JDK的动态代理了。
我们首先定义一个类实现InvocationHandler
接口,将要代理的对象通过构造方法传入,并实现invoke
方法。
public class MyProxyHandler implements InvocationHandler { //要代理的对象 private Calculator target; public MyProxyHandler(Calculator h) { this.target = h; } @Override public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { //获取参数 System.out.println("beginWith---方法的参数是--" + Arrays.asList(args)); before(); Object result = method.invoke(target,args); after(); return result; } /** * 前置 */ public void before() { System.out.println("before---"); } /** * 后置 */ public void after() { System.out.println("after---"); } }
最后我们利用JDK提供的Proxy类来实现我们想要的功能
/** * jdk动态代理测试 * @author mingshan * */ public class Test { public static void main(String[] args) { Calculator target = new CalculatorImpl(); Calculator proxy = (Calculator) Proxy.newProxyInstance(Calculator.class.getClassLoader(), new Class<?>[]{Calculator.class}, new MyProxyHandler(target)); proxy.add(1, 2); } }
具体实现流程
动态代理之所以被称为动态代理,那是因为代理类是在运行过程中被Java动态生成的,我们可以看到这个被生成的代理类,需要在运行运行配置加上-Dsun.misc.ProxyGenerator.saveGeneratedFiles=true
这个虚拟机参数,那么就会在当前项目com.sun.proxy
包路径下生成$Proxy0.class
这个class文件,其中文件名的数字是可变的。
代理类生成的过程主要包括两部分:
- 代理类字节码生成
- 把字节码通过传入的类加载器加载到虚拟机中
我们首先从Proxy类的newProxyInstance方法入手,开始分析实现流程。
public static Object newProxyInstance(ClassLoader loader, Class<?>[] interfaces, InvocationHandler h) throws IllegalArgumentException { // 检查空指针异常 Objects.requireNonNull(h); final Class<?>[] intfs = interfaces.clone(); // 安全检查 final SecurityManager sm = System.getSecurityManager(); if (sm != null) { checkProxyAccess(Reflection.getCallerClass(), loader, intfs); } // 生成代理类 Class<?> cl = getProxyClass0(loader, intfs); /* * Invoke its constructor with the designated invocation handler. */ try { if (sm != null) { checkNewProxyPermission(Reflection.getCallerClass(), cl); } final Constructor<?> cons = cl.getConstructor(constructorParams); final InvocationHandler ih = h; if (!Modifier.isPublic(cl.getModifiers())) { AccessController.doPrivileged(new PrivilegedAction<Void>() { public Void run() { cons.setAccessible(true); return null; } }); } return cons.newInstance(new Object[]{h}); } catch (IllegalAccessException|InstantiationException e) { throw new InternalError(e.toString(), e); } catch (InvocationTargetException e) { Throwable t = e.getCause(); if (t instanceof RuntimeException) { throw (RuntimeException) t; } else { throw new InternalError(t.toString(), t); } } catch (NoSuchMethodException e) { throw new InternalError(e.toString(), e); } }
newProxyInstance
方法需要三个参数,分别是类加载器,接口类型的数组和自定义的InvocationHandler。首选会检测空指针异常和安全检查,然后调用getProxyClass0
方法,getProxyClass0
源码如下:
private static Class<?> getProxyClass0(ClassLoader loader, Class<?>... interfaces) { if (interfaces.length > 65535) { throw new IllegalArgumentException("interface limit exceeded"); } // If the proxy class defined by the given loader implementing // the given interfaces exists, this will simply return the cached copy; // otherwise, it will create the proxy class via the ProxyClassFactory return proxyClassCache.get(loader, interfaces); }
代码里面的注释很清楚,如果实现当前接口的代理类存在,直接从缓存中返回,如果不存在,则通过ProxyClassFactory来创建。这里可以明显看到有对interface接口数量的限制,不能超过65535。其中proxyClassCache具体初始化信息如下:
proxyClassCache = new WeakCache<>(new KeyFactory(), new ProxyClassFactory());
其中创建代理类的具体逻辑是通过ProxyClassFactory的apply方法来创建的,ProxyClassFactory类中还包含代理类名称生成相关的两个静态常量,源码如下:
// prefix for all proxy class names private static final String proxyClassNamePrefix = "$Proxy"; // next number to use for generation of unique proxy class names private static final AtomicLong nextUniqueNumber = new AtomicLong(); @Override public Class<?> apply(ClassLoader loader, Class<?>[] interfaces) { Map<Class<?>, Boolean> interfaceSet = new IdentityHashMap<>(interfaces.length); for (Class<?> intf : interfaces) { /* * Verify that the class loader resolves the name of this * interface to the same Class object. */ Class<?> interfaceClass = null; try { interfaceClass = Class.forName(intf.getName(), false, loader); } catch (ClassNotFoundException e) { } if (interfaceClass != intf) { throw new IllegalArgumentException( intf + " is not visible from class loader"); } /* * Verify that the Class object actually represents an * interface. */ if (!interfaceClass.isInterface()) { throw new IllegalArgumentException( interfaceClass.getName() + " is not an interface"); } /* * Verify that this interface is not a duplicate. */ if (interfaceSet.put(interfaceClass, Boolean.TRUE) != null) { throw new IllegalArgumentException( "repeated interface: " + interfaceClass.getName()); } } String proxyPkg = null; // package to define proxy class in int accessFlags = Modifier.PUBLIC | Modifier.FINAL; /* * Record the package of a non-public proxy interface so that the * proxy class will be defined in the same package. Verify that * all non-public proxy interfaces are in the same package. */ for (Class<?> intf : interfaces) { int flags = intf.getModifiers(); if (!Modifier.isPublic(flags)) { accessFlags = Modifier.FINAL; String name = intf.getName(); int n = name.lastIndexOf('.'); String pkg = ((n == -1) ? "" : name.substring(0, n + 1)); if (proxyPkg == null) { proxyPkg = pkg; } else if (!pkg.equals(proxyPkg)) { throw new IllegalArgumentException( "non-public interfaces from different packages"); } } } if (proxyPkg == null) { // if no non-public proxy interfaces, use com.sun.proxy package proxyPkg = ReflectUtil.PROXY_PACKAGE + "."; } /* * Choose a name for the proxy class to generate. */ long num = nextUniqueNumber.getAndIncrement(); String proxyName = proxyPkg + proxyClassNamePrefix + num; /* * Generate the specified proxy class. */ byte[] proxyClassFile = ProxyGenerator.generateProxyClass( proxyName, interfaces, accessFlags); try { return defineClass0(loader, proxyName, proxyClassFile, 0, proxyClassFile.length); } catch (ClassFormatError e) { /* * A ClassFormatError here means that (barring bugs in the * proxy class generation code) there was some other * invalid aspect of the arguments supplied to the proxy * class creation (such as virtual machine limitations * exceeded). */ throw new IllegalArgumentException(e.toString()); } }
apply方法需要两个参数,类加载器和接口类型的数组。该方法包含验证类加载器和接口相关逻辑,包名的创建逻辑,调用ProxyGenerator. generateProxyClass
生成代理类,把代理类字节码加载到JVM。
- 包名默认是
com.sun.proxy
,如果被代理类是 non-public proxy interface ,则用和被代理类接口一样的包名,类名默认是 Proxy0,$Proxy1。 - 包名类名准备好后,就是通过
ProxyGenerator.generateProxyClass
根据具体传入的接口创建代理字节码,-Dsun.misc.ProxyGenerator.saveGeneratedFiles=true
这个VM参数就是在该方法起到作用,如果为true则保存字节码到磁盘。代理类中,所有的代理方法逻辑都一样都是调用invocationHander的invoke方法,这个我们可以看后面具体代理反编译结果。 - 把字节码通过传入的类加载器加载到JVM中: defineClass0(loader, proxyName,proxyClassFile, 0, proxyClassFile.length);。
我们继续来看看generateProxyClass
方法是如何实现的,下面是该类的源码
public static byte[] generateProxyClass(final String var0, Class<?>[] var1, int var2) { ProxyGenerator var3 = new ProxyGenerator(var0, var1, var2); // 生成代理类字节码文件的真正方法 final byte[] var4 = var3.generateClassFile(); // 保存文件操作 if (saveGeneratedFiles) { AccessController.doPrivileged(new PrivilegedAction<Void>() { public Void run() { try { int var1 = var0.lastIndexOf(46); Path var2; if (var1 > 0) { Path var3 = Paths.get(var0.substring(0, var1).replace('.', File.separatorChar)); Files.createDirectories(var3); var2 = var3.resolve(var0.substring(var1 + 1, var0.length()) + ".class"); } else { var2 = Paths.get(var0 + ".class"); } Files.write(var2, var4, new OpenOption[0]); return null; } catch (IOException var4x) { throw new InternalError("I/O exception saving generated file: " + var4x); } } }); } return var4; }
在generateProxyClass
方法中,通过调用ProxyGenerator
类的generateClassFile
方法,来生成代理类字节码文件,然后保存文件。
接下来我们看看generateClassFile
方法干了些什么,下面是该方法的源码(方法有点长~):
private byte[] generateClassFile() { // addProxyMethod系列方法就是将接口的方法和Object的hashCode,equals,toString方法添加到代理方法Map(proxyMethods), // 其中方法签名作为key,proxyMethod作为value // 后面经过反编译生成的代理类看出,hashCode,equals,toString这三个方法相当于从Object拿过来, // m0 = Class.forName("java.lang.Object").getMethod("hashCode", new Class[0]); this.addProxyMethod(hashCodeMethod, Object.class); this.addProxyMethod(equalsMethod, Object.class); this.addProxyMethod(toStringMethod, Object.class); Class[] var1 = this.interfaces; int var2 = var1.length; int var3; Class var4; // 获得所有接口中的所有方法,并将方法添加到代理方法中 for(var3 = 0; var3 < var2; ++var3) { var4 = var1[var3]; Method[] var5 = var4.getMethods(); int var6 = var5.length; for(int var7 = 0; var7 < var6; ++var7) { Method var8 = var5[var7]; this.addProxyMethod(var8, var4); } } // 迭代存储在map中的ProxyMethod Iterator var11 = this.proxyMethods.values().iterator(); List var12; while(var11.hasNext()) { var12 = (List)var11.next(); checkReturnTypes(var12); } Iterator var15; try { // 生成代理类的构造函数 this.methods.add(this.generateConstructor()); var11 = this.proxyMethods.values().iterator(); while(var11.hasNext()) { var12 = (List)var11.next(); var15 = var12.iterator(); while(var15.hasNext()) { ProxyGenerator.ProxyMethod var16 = (ProxyGenerator.ProxyMethod)var15.next(); // 向代理类添加字段 // 将代理字段声明为Method,10为ACC_PRIVATE和ACC_STATAIC的与运算,表示该字段的修饰符为private static // 所以代理类的字段都是private static Method XXX this.fields.add(new ProxyGenerator.FieldInfo(var16.methodFieldName, "Ljava/lang/reflect/Method;", 10)); // 向代理类添加方法 this.methods.add(var16.generateMethod()); } } // 为代理类生成静态代码块,对一些字段进行初始化 this.methods.add(this.generateStaticInitializer()); } catch (IOException var10) { throw new InternalError("unexpected I/O Exception", var10); } // 限制方法和字段数量 if (this.methods.size() > 65535) { throw new IllegalArgumentException("method limit exceeded"); } else if (this.fields.size() > 65535) { throw new IllegalArgumentException("field limit exceeded"); } else { this.cp.getClass(dotToSlash(this.className)); this.cp.getClass("java/lang/reflect/Proxy"); var1 = this.interfaces; var2 = var1.length; for(var3 = 0; var3 < var2; ++var3) { var4 = var1[var3]; this.cp.getClass(dotToSlash(var4.getName())); } this.cp.setReadOnly(); ByteArrayOutputStream var13 = new ByteArrayOutputStream(); DataOutputStream var14 = new DataOutputStream(var13); try { var14.writeInt(-889275714); var14.writeShort(0); var14.writeShort(49); this.cp.write(var14); var14.writeShort(this.accessFlags); var14.writeShort(this.cp.getClass(dotToSlash(this.className))); var14.writeShort(this.cp.getClass("java/lang/reflect/Proxy")); var14.writeShort(this.interfaces.length); Class[] var17 = this.interfaces; int var18 = var17.length; for(int var19 = 0; var19 < var18; ++var19) { Class var22 = var17[var19]; var14.writeShort(this.cp.getClass(dotToSlash(var22.getName()))); } var14.writeShort(this.fields.size()); var15 = this.fields.iterator(); while(var15.hasNext()) { ProxyGenerator.FieldInfo var20 = (ProxyGenerator.FieldInfo)var15.next(); var20.write(var14); } var14.writeShort(this.methods.size()); var15 = this.methods.iterator(); while(var15.hasNext()) { ProxyGenerator.MethodInfo var21 = (ProxyGenerator.MethodInfo)var15.next(); var21.write(var14); } var14.writeShort(0); return var13.toByteArray(); } catch (IOException var9) { throw new InternalError("unexpected I/O Exception", var9); } } }
那么自定义的InvocationHandler是如何在代理中使用的呢? 在上面的方法中向代理类添加方法调用了generateMethod()
方法,所以这个添加方法的步骤就是在generateMethod()
方法中实现的。
由于这个方法太长,这里就不贴全部代码了,方法里面有一段代码如下:
var9.writeShort(ProxyGenerator.this.cp.getFieldRef("java/lang/reflect/Proxy", "h", "Ljava/lang/reflect/InvocationHandler;"));
原来在代理方法中通过Proxy类引用了自定义InvocationHandler,由于通过Proxy的newProxyInstance方法将InvocationHandler传入,生成的代理类通过继承Proxy类,拿到InvocationHandler,
最后调用invoke方法来实现。
明白了JDK动态代理的大致流程,让我们来反编译下生成的代理类,反编译后的$Proxy0.java
的代码如下:
package com.sun.proxy; import java.lang.reflect.InvocationHandler; import java.lang.reflect.Method; import java.lang.reflect.Proxy; import java.lang.reflect.UndeclaredThrowableException; import me.mingshan.dy.Calculator; public final class $Proxy0 extends Proxy implements Calculator { private static Method m1; private static Method m2; private static Method m5; private static Method m3; private static Method m4; private static Method m6; private static Method m0; public $Proxy0(InvocationHandler var1) throws { super(var1); } public final boolean equals(Object var1) throws { try { return ((Boolean)super.h.invoke(this, m1, new Object[]{var1})).booleanValue(); } catch (RuntimeException | Error var3) { throw var3; } catch (Throwable var4) { throw new UndeclaredThrowableException(var4); } } public final String toString() throws { try { return (String)super.h.invoke(this, m2, (Object[])null); } catch (RuntimeException | Error var2) { throw var2; } catch (Throwable var3) { throw new UndeclaredThrowableException(var3); } } public final int mul(int var1, int var2) throws { try { return ((Integer)super.h.invoke(this, m5, new Object[]{Integer.valueOf(var1), Integer.valueOf(var2)})).intValue(); } catch (RuntimeException | Error var4) { throw var4; } catch (Throwable var5) { throw new UndeclaredThrowableException(var5); } } public final int add(int var1, int var2) throws { try { return ((Integer)super.h.invoke(this, m3, new Object[]{Integer.valueOf(var1), Integer.valueOf(var2)})).intValue(); } catch (RuntimeException | Error var4) { throw var4; } catch (Throwable var5) { throw new UndeclaredThrowableException(var5); } } public final int sub(int var1, int var2) throws { try { return ((Integer)super.h.invoke(this, m4, new Object[]{Integer.valueOf(var1), Integer.valueOf(var2)})).intValue(); } catch (RuntimeException | Error var4) { throw var4; } catch (Throwable var5) { throw new UndeclaredThrowableException(var5); } } public final int div(int var1, int var2) throws { try { return ((Integer)super.h.invoke(this, m6, new Object[]{Integer.valueOf(var1), Integer.valueOf(var2)})).intValue(); } catch (RuntimeException | Error var4) { throw var4; } catch (Throwable var5) { throw new UndeclaredThrowableException(var5); } } public final int hashCode() throws { try { return ((Integer)super.h.invoke(this, m0, (Object[])null)).intValue(); } catch (RuntimeException | Error var2) { throw var2; } catch (Throwable var3) { throw new UndeclaredThrowableException(var3); } } static { try { m1 = Class.forName("java.lang.Object").getMethod("equals", new Class[]{Class.forName("java.lang.Object")}); m2 = Class.forName("java.lang.Object").getMethod("toString", new Class[0]); m5 = Class.forName("me.mingshan.dy.Calculator").getMethod("mul", new Class[]{Integer.TYPE, Integer.TYPE}); m3 = Class.forName("me.mingshan.dy.Calculator").getMethod("add", new Class[]{Integer.TYPE, Integer.TYPE}); m4 = Class.forName("me.mingshan.dy.Calculator").getMethod("sub", new Class[]{Integer.TYPE, Integer.TYPE}); m6 = Class.forName("me.mingshan.dy.Calculator").getMethod("div", new Class[]{Integer.TYPE, Integer.TYPE}); m0 = Class.forName("java.lang.Object").getMethod("hashCode", new Class[0]); } catch (NoSuchMethodException var2) { throw new NoSuchMethodError(var2.getMessage()); } catch (ClassNotFoundException var3) { throw new NoClassDefFoundError(var3.getMessage()); } } }
代理类的结构大致如下:
- 静态字段:被代理的接口所有方法都有一个对应的静态方法变量;
- 静态块:主要是通过反射初始化静态方法变量;
- 具体每个代理方法:逻辑都差不多就是
h.invoke
,主要是调用我们自定义的InvocatinoHandler逻辑,触发目标对象target上对应的方法; - 构造函数:从这里传入我们InvocationHandler逻辑
title: JDK动态代理实现原理
tags: [动态代理,java]
author: Mingshan
categories: Java
date: 2018-7-10
本文来自博客园,作者:mingshan,转载请注明原文链接:https://www.cnblogs.com/mingshan/p/17793555.html
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)