时间复杂度
分析:
1 | 大部分程序的大部分指令之执行一次,或者最多几次。如果一个程序的所有指令都具有这样的性质,我们说这个程序的执行时间是常数。 |
logN | 如果一个程序的运行时间是对数级的,则随着N的增大程序会渐渐慢下来,如果一个程序将一个大的问题分解成一系列更小的问题,每一步都将问题的规 模缩减成几分之一 ,一般就会出现这样的运行时间函数。在我们所关心的范围内,可以认为运行时间小于一个大的常数。对数的基数会影响这个常数,但改变不会太 大:当N=1000时,如果基数是10,logN等于3;如果基数是2,logN约等于10.当N=1 00 000,logN只是前值的两倍。当N时原来的两倍,logN只增长了一个常数因子:仅当从N增长到N平方时,logN才会增长到原来的两倍。 |
N | 如果程序的运行时间的线性的,很可能是这样的情况:对每个输入的元素都做了少量的处理。当N=1 000 000时,运行时间大概也就是这个数值;当N增长到原来的两倍时,运行时间大概也增长到原来的两倍。如果一个算法必须处理N个输入(或者产生N个输出), 那么这种情况是最优的。 |
NlogN | 如果某个算法将问题分解成更小的子问题,独立地解决各个子问题,最后将结果综合起来 ,运行时间一般就是NlogN。我们找不到一个更好的形容, 就暂且将这样的算法运行时间叫做NlogN。当N=1 000 000时,NlogN大约是20 000 000。当N增长到原来的两倍,运行时间超过原来的两倍,但超过不是太多。 |
N平方 | 如果一个算法的运行时间是二次的(quadratic),那么它一般只能用于一些规模较小的问题。这样的运行时间通常存在于需要处理每一对输入 数据项的算法(在程序中很可能表现为一个嵌套循环)中,当N=1000时,运行时间是1 000 000;如果N增长到原来的两倍,则运行时间将增长到原来的四倍。 |
N三次方 | 类似的,如果一个算法需要处理输入数据想的三元组(很可能表现为三重嵌套循环),其运行时间一般就是三次的,只能用于一些规模较小的问题。当N=100时,运行时间就是1 000 000;如果N增长到原来的两倍,运行时间将会增长到原来的八倍。 |
2的N次方 | 如果一个算法的运行时间是指数级的(exponential),一般它很难在实践中使用,即使这样的算法通常是对问题的直接求解。当N=20时,运行时间是1 000 000;如果增长到原来的两倍时,运行时间将是原时间的平方! |
log log N 可以看作是一个常数:即使N很多,两次去对数之后也会变得很小 (转自http://clarkluo2004.blog.163.com/blog/static/32973801200845115213422/)
附:log函数图象
例子:
⑴ int num1,num2;
⑵ for(int i=0; i<n; i++){
⑶ num1 += 1;
⑷ for(int j=1; j<=n; j*=2){
⑸ num2 += num1;
⑹ }
⑺ }
分析:
⒈
语句int num1,num2;的频度为1;
语句i=0;的频度为1;
语句i<n; i++; num1+=1; j=1; 的频度为n;
语句j<=n; j*=2; num2+=num1;的频度为n*log2n;
T(n) = 2 + 4n + 3n*log2n
⒉
忽略掉T(n)中的常量、低次幂和最高次幂的系数
f(n) = n*log2n
⒊
lim(T(n)/f(n)) = (2+4n+3n*log2n) / (n*log2n)
= 2*(1/n)*(1/log2n) + 4*(1/log2n) + 3
当n趋向于无穷大,1/n趋向于0,1/log2n趋向于0
所以极限等于3。
T(n) = O(n*log2n)
简化的计算步骤
再来分析一下,可以看出,决定算法复杂度的是执行次数最多的语句,这里是num2 += num1,一般也是最内循环的语句。
并且,通常将求解极限是否为常量也省略掉?
于是,以上步骤可以简化为:
⒈ 找到执行次数最多的语句
⒉ 计算语句执行次数的数量级
⒊ 用大O来表示结果
继续以上述算法为例,进行分析:
⒈
执行次数最多的语句为num2 += num1
⒉
T(n) = n*log2n
f(n) = n*log2n
⒊
// lim(T(n)/f(n)) = 1
T(n) = O(n*log2n)