fasttext源码剖析
目的:记录结合多方资料以及个人理解的剖析代码;
https://heleifz.github.io/14732610572844.html
http://www.cnblogs.com/peghoty/p/3857839.html
一:代码总体模块关联图:
核心模块是fasttext.cc以及model.cc模块,但是辅助模块也很重要,是代码的螺丝钉,以及实现了数据采取什么样子数据结构进行组织,这里的东西值得学习借鉴,而且你会发现存储训练数据的结构比较常用的手段,后期可以对比多个源码的训练数据的结构对比。
部分:螺丝钉代码的剖析
二:dictionary模版
1 /** 2 * Copyright (c) 2016-present, Facebook, Inc. 3 * All rights reserved. 4 * 5 * This source code is licensed under the BSD-style license found in the 6 * LICENSE file in the root directory of this source tree. An additional grant 7 * of patent rights can be found in the PATENTS file in the same directory. 8 */ 9 10 #include "dictionary.h" 11 12 #include <assert.h> 13 14 #include <iostream> 15 #include <algorithm> 16 #include <iterator> 17 #include <unordered_map> 18 19 namespace fasttext { 20 21 const std::string Dictionary::EOS = "</s>"; 22 const std::string Dictionary::BOW = "<"; 23 const std::string Dictionary::EOW = ">"; 24 25 Dictionary::Dictionary(std::shared_ptr<Args> args) { 26 args_ = args; 27 size_ = 0; 28 nwords_ = 0; 29 nlabels_ = 0; 30 ntokens_ = 0; 31 word2int_.resize(MAX_VOCAB_SIZE);//建立全词的索引,hash值在0~MAX_VOCAB_SIZE-1之间 32 for (int32_t i = 0; i < MAX_VOCAB_SIZE; i++) { 33 word2int_[i] = -1; 34 } 35 } 36 //根据字符串,进行hash,hash后若是冲突则线性探索,找到其对应的hash位置 37 int32_t Dictionary::find(const std::string& w) const { 38 int32_t h = hash(w) % MAX_VOCAB_SIZE; 39 while (word2int_[h] != -1 && words_[word2int_[h]].word != w) { 40 h = (h + 1) % MAX_VOCAB_SIZE; 41 } 42 return h; 43 } 44 //向words_添加词,词可能是标签词 45 void Dictionary::add(const std::string& w) { 46 int32_t h = find(w); 47 ntokens_++;//已处理的词 48 if (word2int_[h] == -1) { 49 entry e; 50 e.word = w; 51 e.count = 1; 52 e.type = (w.find(args_->label) == 0) ? entry_type::label : entry_type::word;//与给出标签相同,则表示标签词 53 words_.push_back(e); 54 word2int_[h] = size_++; 55 } else { 56 words_[word2int_[h]].count++; 57 } 58 } 59 //返回纯词个数--去重 60 int32_t Dictionary::nwords() const { 61 return nwords_; 62 } 63 //标签词个数---去重 64 int32_t Dictionary::nlabels() const { 65 return nlabels_; 66 } 67 //返回已经处理的词数---可以重复 68 int64_t Dictionary::ntokens() const { 69 return ntokens_; 70 } 71 //获取纯词的ngram 72 const std::vector<int32_t>& Dictionary::getNgrams(int32_t i) const { 73 assert(i >= 0); 74 assert(i < nwords_); 75 return words_[i].subwords; 76 } 77 //获取纯词的ngram,根据词串 78 const std::vector<int32_t> Dictionary::getNgrams(const std::string& word) const { 79 int32_t i = getId(word); 80 if (i >= 0) { 81 return getNgrams(i); 82 } 83 //若是该词没有被入库词典中,未知词,则计算ngram 84 //这就可以通过其他词的近似ngram来获取该词的ngram 85 std::vector<int32_t> ngrams; 86 computeNgrams(BOW + word + EOW, ngrams); 87 return ngrams; 88 } 89 //是否丢弃的判断标准---这是由于无用词会出现过多的词频,需要被丢弃, 90 bool Dictionary::discard(int32_t id, real rand) const { 91 assert(id >= 0); 92 assert(id < nwords_); 93 if (args_->model == model_name::sup) return false;//非词向量不需要丢弃 94 return rand > pdiscard_[id]; 95 } 96 //获取词的id号 97 int32_t Dictionary::getId(const std::string& w) const { 98 int32_t h = find(w); 99 return word2int_[h]; 100 } 101 //词的类型 102 entry_type Dictionary::getType(int32_t id) const { 103 assert(id >= 0); 104 assert(id < size_); 105 return words_[id].type; 106 } 107 //根据词id获取词串 108 std::string Dictionary::getWord(int32_t id) const { 109 assert(id >= 0); 110 assert(id < size_); 111 return words_[id].word; 112 } 113 //hash规则 114 uint32_t Dictionary::hash(const std::string& str) const { 115 uint32_t h = 2166136261; 116 for (size_t i = 0; i < str.size(); i++) { 117 h = h ^ uint32_t(str[i]); 118 h = h * 16777619; 119 } 120 return h; 121 } 122 //根据词计算其ngram情况 123 void Dictionary::computeNgrams(const std::string& word, 124 std::vector<int32_t>& ngrams) const { 125 for (size_t i = 0; i < word.size(); i++) { 126 std::string ngram; 127 if ((word[i] & 0xC0) == 0x80) continue; 128 for (size_t j = i, n = 1; j < word.size() && n <= args_->maxn; n++) {//n-1个词背景 129 ngram.push_back(word[j++]); 130 while (j < word.size() && (word[j] & 0xC0) == 0x80) { 131 ngram.push_back(word[j++]); 132 } 133 if (n >= args_->minn && !(n == 1 && (i == 0 || j == word.size()))) { 134 int32_t h = hash(ngram) % args_->bucket;//hash余数值 135 ngrams.push_back(nwords_ + h); 136 } 137 } 138 } 139 } 140 //初始化ngram值 141 void Dictionary::initNgrams() { 142 for (size_t i = 0; i < size_; i++) { 143 std::string word = BOW + words_[i].word + EOW; 144 words_[i].subwords.push_back(i); 145 computeNgrams(word, words_[i].subwords); 146 } 147 } 148 //读取词 149 bool Dictionary::readWord(std::istream& in, std::string& word) const 150 { 151 char c; 152 std::streambuf& sb = *in.rdbuf(); 153 word.clear(); 154 while ((c = sb.sbumpc()) != EOF) { 155 if (c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == '\v' || c == '\f' || c == '\0') { 156 if (word.empty()) { 157 if (c == '\n') {//若是空行,则增加一个EOS 158 word += EOS; 159 return true; 160 } 161 continue; 162 } else { 163 if (c == '\n') 164 sb.sungetc();//放回,体现对于换行符会用EOS替换 165 return true; 166 } 167 } 168 word.push_back(c); 169 } 170 // trigger eofbit 171 in.get(); 172 return !word.empty(); 173 } 174 //读取文件---获取词典;初始化舍弃规则,初始化ngram 175 void Dictionary::readFromFile(std::istream& in) { 176 std::string word; 177 int64_t minThreshold = 1;//阈值 178 while (readWord(in, word)) { 179 add(word); 180 if (ntokens_ % 1000000 == 0 && args_->verbose > 1) { 181 std::cout << "\rRead " << ntokens_ / 1000000 << "M words" << std::flush; 182 } 183 if (size_ > 0.75 * MAX_VOCAB_SIZE) {//词保证是不超过75% 184 minThreshold++; 185 threshold(minThreshold, minThreshold);//过滤小于minThreshold的词,顺便排序了 186 } 187 } 188 threshold(args_->minCount, args_->minCountLabel);//目的是排序,顺带过滤词,指定过滤 189 190 initTableDiscard(); 191 initNgrams(); 192 if (args_->verbose > 0) { 193 std::cout << "\rRead " << ntokens_ / 1000000 << "M words" << std::endl; 194 std::cout << "Number of words: " << nwords_ << std::endl; 195 std::cout << "Number of labels: " << nlabels_ << std::endl; 196 } 197 if (size_ == 0) { 198 std::cerr << "Empty vocabulary. Try a smaller -minCount value." << std::endl; 199 exit(EXIT_FAILURE); 200 } 201 } 202 //缩减词,且排序词 203 void Dictionary::threshold(int64_t t, int64_t tl) { 204 sort(words_.begin(), words_.end(), [](const entry& e1, const entry& e2) { 205 if (e1.type != e2.type) return e1.type < e2.type;//不同类型词,将标签词排在后面 206 return e1.count > e2.count;//同类则词频降序排 207 });//排序,根据词频 208 words_.erase(remove_if(words_.begin(), words_.end(), [&](const entry& e) { 209 return (e.type == entry_type::word && e.count < t) || 210 (e.type == entry_type::label && e.count < tl); 211 }), words_.end());//删除阈值以下的词 212 words_.shrink_to_fit();//剔除 213 //更新词典的信息 214 size_ = 0; 215 nwords_ = 0; 216 nlabels_ = 0; 217 for (int32_t i = 0; i < MAX_VOCAB_SIZE; i++) { 218 word2int_[i] = -1;//重置 219 } 220 for (auto it = words_.begin(); it != words_.end(); ++it) { 221 int32_t h = find(it->word);//重新构造hash 222 word2int_[h] = size_++; 223 if (it->type == entry_type::word) nwords_++; 224 if (it->type == entry_type::label) nlabels_++; 225 } 226 } 227 //初始化丢弃规则--- 228 void Dictionary::initTableDiscard() {//t采样的阈值,0表示全部舍弃,1表示不采样 229 pdiscard_.resize(size_); 230 for (size_t i = 0; i < size_; i++) { 231 real f = real(words_[i].count) / real(ntokens_);//f概率高 232 pdiscard_[i] = sqrt(args_->t / f) + args_->t / f;//与论文貌似不一样????? 233 } 234 } 235 //返回词的频数--所以词的词频和 236 std::vector<int64_t> Dictionary::getCounts(entry_type type) const { 237 std::vector<int64_t> counts; 238 for (auto& w : words_) { 239 if (w.type == type) counts.push_back(w.count); 240 } 241 return counts; 242 } 243 //增加ngram, 244 void Dictionary::addNgrams(std::vector<int32_t>& line, int32_t n) const { 245 int32_t line_size = line.size(); 246 for (int32_t i = 0; i < line_size; i++) { 247 uint64_t h = line[i]; 248 for (int32_t j = i + 1; j < line_size && j < i + n; j++) { 249 h = h * 116049371 + line[j]; 250 line.push_back(nwords_ + (h % args_->bucket)); 251 } 252 } 253 } 254 //获取词行 255 int32_t Dictionary::getLine(std::istream& in, 256 std::vector<int32_t>& words, 257 std::vector<int32_t>& labels, 258 std::minstd_rand& rng) const { 259 std::uniform_real_distribution<> uniform(0, 1);//均匀随机0~1 260 std::string token; 261 int32_t ntokens = 0; 262 words.clear(); 263 labels.clear(); 264 if (in.eof()) { 265 in.clear(); 266 in.seekg(std::streampos(0)); 267 } 268 while (readWord(in, token)) { 269 if (token == EOS) break;//表示一行的结束 270 int32_t wid = getId(token); 271 if (wid < 0) continue;//表示词的id木有,代表未知词,则跳过 272 entry_type type = getType(wid); 273 ntokens++;//已经获取词数 274 if (type == entry_type::word && !discard(wid, uniform(rng))) {//随机采取样,表示是否取该词 275 words.push_back(wid);//词的收集--词肯定在nwords_以下 276 } 277 if (type == entry_type::label) {//标签词全部采取,肯定在nwords_以上 278 labels.push_back(wid - nwords_);//也就是labels的值需要加上nwords才能够寻找到标签词 279 } 280 if (words.size() > MAX_LINE_SIZE && args_->model != model_name::sup) break;//词向量则有限制句子长度 281 } 282 return ntokens; 283 } 284 //获取标签词,根据的是标签词的lid 285 std::string Dictionary::getLabel(int32_t lid) const {//标签词 286 assert(lid >= 0); 287 assert(lid < nlabels_); 288 return words_[lid + nwords_].word; 289 } 290 //保存词典 291 void Dictionary::save(std::ostream& out) const { 292 out.write((char*) &size_, sizeof(int32_t)); 293 out.write((char*) &nwords_, sizeof(int32_t)); 294 out.write((char*) &nlabels_, sizeof(int32_t)); 295 out.write((char*) &ntokens_, sizeof(int64_t)); 296 for (int32_t i = 0; i < size_; i++) {//词 297 entry e = words_[i]; 298 out.write(e.word.data(), e.word.size() * sizeof(char));//词 299 out.put(0);//字符串结束标志位 300 out.write((char*) &(e.count), sizeof(int64_t)); 301 out.write((char*) &(e.type), sizeof(entry_type)); 302 } 303 } 304 //加载词典 305 void Dictionary::load(std::istream& in) { 306 words_.clear(); 307 for (int32_t i = 0; i < MAX_VOCAB_SIZE; i++) { 308 word2int_[i] = -1; 309 } 310 in.read((char*) &size_, sizeof(int32_t)); 311 in.read((char*) &nwords_, sizeof(int32_t)); 312 in.read((char*) &nlabels_, sizeof(int32_t)); 313 in.read((char*) &ntokens_, sizeof(int64_t)); 314 for (int32_t i = 0; i < size_; i++) { 315 char c; 316 entry e; 317 while ((c = in.get()) != 0) { 318 e.word.push_back(c); 319 } 320 in.read((char*) &e.count, sizeof(int64_t)); 321 in.read((char*) &e.type, sizeof(entry_type)); 322 words_.push_back(e); 323 word2int_[find(e.word)] = i;//建立索引 324 } 325 initTableDiscard();//初始化抛弃规则 326 initNgrams();//初始化ngram词 327 } 328 329 }
个人觉得有必要说明的地方:
1:关于字符串映射过程,以及如何建立一套索引的,详情见下图:涉及的函数主要是find,内部实现需要hash函数建立hash规则,借助2个vector来进行关联。StrToHash(find函数) HashToIndex(word2int数组) IndexToStruct(words_数组)
2:初始化几个有用的表,目的是加速运行速度
1)初始化ngram表,即每个词都对应一个ngram的表的id列表。比如词 "我想你" ,通过computeNgrams函数可以计算出相应ngram的词索引,假设ngram的词最短为2,最长为3,则就是"<我","我想","想你","你>",<我想","我想你","想你>"的子词组成,这里有"<>"因为这里会自动添加这样的词的开始和结束位。这里注意代码实现中的"(word[j] & 0xC0) == 0x80)"这里是考虑utf-8的汉字情况,来使得能够取出完整的一个汉字作为一个"字"
2) 初始化initTableDiscard表,对每个词根据词的频率获取相应的丢弃概率值,若是给定的阈值小于这个表的值那么就丢弃该词,这里是因为对于频率过高的词可能就是无用词,所以丢弃。比如"的","是"等;这里的实现与论文中有点差异,这里是当表中的词小于某个值表示该丢弃,这里因为这里没有对其求1-p形式,而是p+p^2。若是同理转为同方向,则论文是p,现实是p+p^2,这样的做法是使得打压更加宽松点,也就是更多词会被当作无用词丢弃。(不知道原因)
3:外界使用该.cc的主线,一是readFromFile函数,加载词;二是getLine,获取句的词。
类似的vector.cc,matrix.cc,args.cc等代码解析如下:
1 /** 2 * Copyright (c) 2016-present, Facebook, Inc. 3 * All rights reserved. 4 * 5 * This source code is licensed under the BSD-style license found in the 6 * LICENSE file in the root directory of this source tree. An additional grant 7 * of patent rights can be found in the PATENTS file in the same directory. 8 */ 9 10 #include "matrix.h" 11 12 #include <assert.h> 13 14 #include <random> 15 16 #include "utils.h" 17 #include "vector.h" 18 19 namespace fasttext { 20 21 Matrix::Matrix() { 22 m_ = 0; 23 n_ = 0; 24 data_ = nullptr; 25 } 26 27 Matrix::Matrix(int64_t m, int64_t n) { 28 m_ = m; 29 n_ = n; 30 data_ = new real[m * n]; 31 } 32 33 Matrix::Matrix(const Matrix& other) { 34 m_ = other.m_; 35 n_ = other.n_; 36 data_ = new real[m_ * n_]; 37 for (int64_t i = 0; i < (m_ * n_); i++) { 38 data_[i] = other.data_[i]; 39 } 40 } 41 42 Matrix& Matrix::operator=(const Matrix& other) { 43 Matrix temp(other); 44 m_ = temp.m_; 45 n_ = temp.n_; 46 std::swap(data_, temp.data_); 47 return *this; 48 } 49 50 Matrix::~Matrix() { 51 delete[] data_; 52 } 53 54 void Matrix::zero() { 55 for (int64_t i = 0; i < (m_ * n_); i++) { 56 data_[i] = 0.0; 57 } 58 } 59 //随机初始化矩阵-均匀随机 60 void Matrix::uniform(real a) { 61 std::minstd_rand rng(1); 62 std::uniform_real_distribution<> uniform(-a, a); 63 for (int64_t i = 0; i < (m_ * n_); i++) { 64 data_[i] = uniform(rng); 65 } 66 } 67 //加向量 68 void Matrix::addRow(const Vector& vec, int64_t i, real a) { 69 assert(i >= 0); 70 assert(i < m_); 71 assert(vec.m_ == n_); 72 for (int64_t j = 0; j < n_; j++) { 73 data_[i * n_ + j] += a * vec.data_[j]; 74 } 75 } 76 //点乘向量 77 real Matrix::dotRow(const Vector& vec, int64_t i) { 78 assert(i >= 0); 79 assert(i < m_); 80 assert(vec.m_ == n_); 81 real d = 0.0; 82 for (int64_t j = 0; j < n_; j++) { 83 d += data_[i * n_ + j] * vec.data_[j]; 84 } 85 return d; 86 } 87 //存储 88 void Matrix::save(std::ostream& out) { 89 out.write((char*) &m_, sizeof(int64_t)); 90 out.write((char*) &n_, sizeof(int64_t)); 91 out.write((char*) data_, m_ * n_ * sizeof(real)); 92 } 93 //加载 94 void Matrix::load(std::istream& in) { 95 in.read((char*) &m_, sizeof(int64_t)); 96 in.read((char*) &n_, sizeof(int64_t)); 97 delete[] data_; 98 data_ = new real[m_ * n_]; 99 in.read((char*) data_, m_ * n_ * sizeof(real)); 100 } 101 102 }
/** * Copyright (c) 2016-present, Facebook, Inc. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. An additional grant * of patent rights can be found in the PATENTS file in the same directory. */ #include "vector.h" #include <assert.h> #include <iomanip> #include "matrix.h" #include "utils.h" namespace fasttext { Vector::Vector(int64_t m) { m_ = m; data_ = new real[m]; } Vector::~Vector() { delete[] data_; } int64_t Vector::size() const { return m_; } void Vector::zero() { for (int64_t i = 0; i < m_; i++) { data_[i] = 0.0; } } //数乘向量 void Vector::mul(real a) { for (int64_t i = 0; i < m_; i++) { data_[i] *= a; } } //向量相加 void Vector::addRow(const Matrix& A, int64_t i) { assert(i >= 0); assert(i < A.m_); assert(m_ == A.n_); for (int64_t j = 0; j < A.n_; j++) { data_[j] += A.data_[i * A.n_ + j]; } } //加数乘向量 void Vector::addRow(const Matrix& A, int64_t i, real a) { assert(i >= 0); assert(i < A.m_); assert(m_ == A.n_); for (int64_t j = 0; j < A.n_; j++) { data_[j] += a * A.data_[i * A.n_ + j]; } } //向量与矩阵相乘得到的向量 void Vector::mul(const Matrix& A, const Vector& vec) { assert(A.m_ == m_); assert(A.n_ == vec.m_); for (int64_t i = 0; i < m_; i++) { data_[i] = 0.0; for (int64_t j = 0; j < A.n_; j++) { data_[i] += A.data_[i * A.n_ + j] * vec.data_[j]; } } } //最大分量 int64_t Vector::argmax() { real max = data_[0]; int64_t argmax = 0; for (int64_t i = 1; i < m_; i++) { if (data_[i] > max) { max = data_[i]; argmax = i; } } return argmax; } real& Vector::operator[](int64_t i) { return data_[i]; } const real& Vector::operator[](int64_t i) const { return data_[i]; } std::ostream& operator<<(std::ostream& os, const Vector& v) { os << std::setprecision(5); for (int64_t j = 0; j < v.m_; j++) { os << v.data_[j] << ' '; } return os; } }
1 /** 2 * Copyright (c) 2016-present, Facebook, Inc. 3 * All rights reserved. 4 * 5 * This source code is licensed under the BSD-style license found in the 6 * LICENSE file in the root directory of this source tree. An additional grant 7 * of patent rights can be found in the PATENTS file in the same directory. 8 */ 9 10 #include "args.h" 11 12 #include <stdlib.h> 13 #include <string.h> 14 15 #include <iostream> 16 17 namespace fasttext { 18 19 Args::Args() { 20 lr = 0.05; 21 dim = 100; 22 ws = 5; 23 epoch = 5; 24 minCount = 5; 25 minCountLabel = 0; 26 neg = 5; 27 wordNgrams = 1; 28 loss = loss_name::ns; 29 model = model_name::sg; 30 bucket = 2000000;//允许的ngram词典大小2M 31 minn = 3; 32 maxn = 6; 33 thread = 12; 34 lrUpdateRate = 100; 35 t = 1e-4;//默认 36 label = "__label__"; 37 verbose = 2; 38 pretrainedVectors = ""; 39 } 40 41 void Args::parseArgs(int argc, char** argv) { 42 std::string command(argv[1]); 43 if (command == "supervised") { 44 model = model_name::sup; 45 loss = loss_name::softmax; 46 minCount = 1; 47 minn = 0; 48 maxn = 0; 49 lr = 0.1; 50 } else if (command == "cbow") { 51 model = model_name::cbow; 52 } 53 int ai = 2; 54 while (ai < argc) { 55 if (argv[ai][0] != '-') { 56 std::cout << "Provided argument without a dash! Usage:" << std::endl; 57 printHelp(); 58 exit(EXIT_FAILURE); 59 } 60 if (strcmp(argv[ai], "-h") == 0) { 61 std::cout << "Here is the help! Usage:" << std::endl; 62 printHelp(); 63 exit(EXIT_FAILURE); 64 } else if (strcmp(argv[ai], "-input") == 0) { 65 input = std::string(argv[ai + 1]); 66 } else if (strcmp(argv[ai], "-test") == 0) { 67 test = std::string(argv[ai + 1]); 68 } else if (strcmp(argv[ai], "-output") == 0) { 69 output = std::string(argv[ai + 1]); 70 } else if (strcmp(argv[ai], "-lr") == 0) { 71 lr = atof(argv[ai + 1]); 72 } else if (strcmp(argv[ai], "-lrUpdateRate") == 0) { 73 lrUpdateRate = atoi(argv[ai + 1]); 74 } else if (strcmp(argv[ai], "-dim") == 0) { 75 dim = atoi(argv[ai + 1]); 76 } else if (strcmp(argv[ai], "-ws") == 0) { 77 ws = atoi(argv[ai + 1]); 78 } else if (strcmp(argv[ai], "-epoch") == 0) { 79 epoch = atoi(argv[ai + 1]); 80 } else if (strcmp(argv[ai], "-minCount") == 0) { 81 minCount = atoi(argv[ai + 1]); 82 } else if (strcmp(argv[ai], "-minCountLabel") == 0) { 83 minCountLabel = atoi(argv[ai + 1]); 84 } else if (strcmp(argv[ai], "-neg") == 0) { 85 neg = atoi(argv[ai + 1]); 86 } else if (strcmp(argv[ai], "-wordNgrams") == 0) { 87 wordNgrams = atoi(argv[ai + 1]); 88 } else if (strcmp(argv[ai], "-loss") == 0) { 89 if (strcmp(argv[ai + 1], "hs") == 0) { 90 loss = loss_name::hs; 91 } else if (strcmp(argv[ai + 1], "ns") == 0) { 92 loss = loss_name::ns; 93 } else if (strcmp(argv[ai + 1], "softmax") == 0) { 94 loss = loss_name::softmax; 95 } else { 96 std::cout << "Unknown loss: " << argv[ai + 1] << std::endl; 97 printHelp(); 98 exit(EXIT_FAILURE); 99 } 100 } else if (strcmp(argv[ai], "-bucket") == 0) { 101 bucket = atoi(argv[ai + 1]); 102 } else if (strcmp(argv[ai], "-minn") == 0) { 103 minn = atoi(argv[ai + 1]); 104 } else if (strcmp(argv[ai], "-maxn") == 0) { 105 maxn = atoi(argv[ai + 1]); 106 } else if (strcmp(argv[ai], "-thread") == 0) { 107 thread = atoi(argv[ai + 1]); 108 } else if (strcmp(argv[ai], "-t") == 0) { 109 t = atof(argv[ai + 1]); 110 } else if (strcmp(argv[ai], "-label") == 0) { 111 label = std::string(argv[ai + 1]); 112 } else if (strcmp(argv[ai], "-verbose") == 0) { 113 verbose = atoi(argv[ai + 1]); 114 } else if (strcmp(argv[ai], "-pretrainedVectors") == 0) { 115 pretrainedVectors = std::string(argv[ai + 1]); 116 } else { 117 std::cout << "Unknown argument: " << argv[ai] << std::endl; 118 printHelp(); 119 exit(EXIT_FAILURE); 120 } 121 ai += 2; 122 } 123 if (input.empty() || output.empty()) { 124 std::cout << "Empty input or output path." << std::endl; 125 printHelp(); 126 exit(EXIT_FAILURE); 127 } 128 if (wordNgrams <= 1 && maxn == 0) { 129 bucket = 0; 130 } 131 } 132 133 void Args::printHelp() { 134 std::string lname = "ns"; 135 if (loss == loss_name::hs) lname = "hs"; 136 if (loss == loss_name::softmax) lname = "softmax"; 137 std::cout 138 << "\n" 139 << "The following arguments are mandatory:\n" 140 << " -input training file path\n" 141 << " -output output file path\n\n" 142 << "The following arguments are optional:\n" 143 << " -lr learning rate [" << lr << "]\n" 144 << " -lrUpdateRate change the rate of updates for the learning rate [" << lrUpdateRate << "]\n" 145 << " -dim size of word vectors [" << dim << "]\n" 146 << " -ws size of the context window [" << ws << "]\n" 147 << " -epoch number of epochs [" << epoch << "]\n" 148 << " -minCount minimal number of word occurences [" << minCount << "]\n" 149 << " -minCountLabel minimal number of label occurences [" << minCountLabel << "]\n" 150 << " -neg number of negatives sampled [" << neg << "]\n" 151 << " -wordNgrams max length of word ngram [" << wordNgrams << "]\n" 152 << " -loss loss function {ns, hs, softmax} [ns]\n" 153 << " -bucket number of buckets [" << bucket << "]\n" 154 << " -minn min length of char ngram [" << minn << "]\n" 155 << " -maxn max length of char ngram [" << maxn << "]\n" 156 << " -thread number of threads [" << thread << "]\n" 157 << " -t sampling threshold [" << t << "]\n" 158 << " -label labels prefix [" << label << "]\n" 159 << " -verbose verbosity level [" << verbose << "]\n" 160 << " -pretrainedVectors pretrained word vectors for supervised learning []" 161 << std::endl; 162 } 163 164 void Args::save(std::ostream& out) { 165 out.write((char*) &(dim), sizeof(int)); 166 out.write((char*) &(ws), sizeof(int)); 167 out.write((char*) &(epoch), sizeof(int)); 168 out.write((char*) &(minCount), sizeof(int)); 169 out.write((char*) &(neg), sizeof(int)); 170 out.write((char*) &(wordNgrams), sizeof(int)); 171 out.write((char*) &(loss), sizeof(loss_name)); 172 out.write((char*) &(model), sizeof(model_name)); 173 out.write((char*) &(bucket), sizeof(int)); 174 out.write((char*) &(minn), sizeof(int)); 175 out.write((char*) &(maxn), sizeof(int)); 176 out.write((char*) &(lrUpdateRate), sizeof(int)); 177 out.write((char*) &(t), sizeof(double)); 178 } 179 180 void Args::load(std::istream& in) { 181 in.read((char*) &(dim), sizeof(int)); 182 in.read((char*) &(ws), sizeof(int)); 183 in.read((char*) &(epoch), sizeof(int)); 184 in.read((char*) &(minCount), sizeof(int)); 185 in.read((char*) &(neg), sizeof(int)); 186 in.read((char*) &(wordNgrams), sizeof(int)); 187 in.read((char*) &(loss), sizeof(loss_name)); 188 in.read((char*) &(model), sizeof(model_name)); 189 in.read((char*) &(bucket), sizeof(int)); 190 in.read((char*) &(minn), sizeof(int)); 191 in.read((char*) &(maxn), sizeof(int)); 192 in.read((char*) &(lrUpdateRate), sizeof(int)); 193 in.read((char*) &(t), sizeof(double)); 194 } 195 196 }
三:model.cc
/** * Copyright (c) 2016-present, Facebook, Inc. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. An additional grant * of patent rights can be found in the PATENTS file in the same directory. */ #include "model.h" #include <assert.h> #include <algorithm> #include "utils.h" namespace fasttext { Model::Model(std::shared_ptr<Matrix> wi, std::shared_ptr<Matrix> wo, std::shared_ptr<Args> args, int32_t seed) : hidden_(args->dim), output_(wo->m_), grad_(args->dim), rng(seed) { wi_ = wi;//输入--上下文 wo_ = wo;//参数矩阵,行对应于某个词的参数集合 args_ = args;//参数 isz_ = wi->m_; osz_ = wo->m_; hsz_ = args->dim; negpos = 0; loss_ = 0.0; nexamples_ = 1; initSigmoid(); initLog(); } Model::~Model() { delete[] t_sigmoid; delete[] t_log; } //小型逻辑回归 real Model::binaryLogistic(int32_t target, bool label, real lr) { real score = sigmoid(wo_->dotRow(hidden_, target));//获取sigmod,某一行的-target==== q real alpha = lr * (real(label) - score);//若是正样本,则1,否则是0================= g grad_.addRow(*wo_, target, alpha);//更新中间值 == e wo_->addRow(hidden_, target, alpha);//更新参数 if (label) {//记录损失值----根据公式来的,L=log(1/p(x)) ,p(x)是概率值 return -log(score);//p(x)=score } else { return -log(1.0 - score);//p(x)=1-score score表示为1的概率 } } //负采样的方式 real Model::negativeSampling(int32_t target, real lr) {//target表示目标词的index real loss = 0.0; grad_.zero();//e值的设置为0 for (int32_t n = 0; n <= args_->neg; n++) {//负采样的比例,这里数目 if (n == 0) {//正样例 loss += binaryLogistic(target, true, lr); } else {//负样例--neg 个 loss += binaryLogistic(getNegative(target), false, lr); } } return loss; } //层次softmax real Model::hierarchicalSoftmax(int32_t target, real lr) { real loss = 0.0; grad_.zero(); const std::vector<bool>& binaryCode = codes[target]; const std::vector<int32_t>& pathToRoot = paths[target]; for (int32_t i = 0; i < pathToRoot.size(); i++) {//根据编码路劲搞,词到根目录的 loss += binaryLogistic(pathToRoot[i], binaryCode[i], lr); } return loss; } //计算softmax值,存入output中 void Model::computeOutputSoftmax(Vector& hidden, Vector& output) const { output.mul(*wo_, hidden);//向量乘以矩阵---输出=参数转移矩阵*输入 real max = output[0], z = 0.0; for (int32_t i = 0; i < osz_; i++) {//获取最大的内积值 max = std::max(output[i], max); } for (int32_t i = 0; i < osz_; i++) {//求出每个内积值相对最大值的情况 output[i] = exp(output[i] - max); z += output[i];//累计和,用于归一化 } for (int32_t i = 0; i < osz_; i++) {//求出softmax值 output[i] /= z; } } void Model::computeOutputSoftmax() { computeOutputSoftmax(hidden_, output_); } //普通softmax计算 real Model::softmax(int32_t target, real lr) { grad_.zero(); computeOutputSoftmax(); for (int32_t i = 0; i < osz_; i++) {//遍历所有词---此次操作只是针对一个词的更新 real label = (i == target) ? 1.0 : 0.0; real alpha = lr * (label - output_[i]);//中间参数 grad_.addRow(*wo_, i, alpha);//更新e值 wo_->addRow(hidden_, i, alpha);//更新参数 } return -log(output_[target]);//损失值 } //计算映射层的向量 void Model::computeHidden(const std::vector<int32_t>& input, Vector& hidden) const { assert(hidden.size() == hsz_); hidden.zero(); for (auto it = input.cbegin(); it != input.cend(); ++it) {//指定的行进行累加,也就是上下文的词向量 hidden.addRow(*wi_, *it); } hidden.mul(1.0 / input.size());//求均值为Xw } //比较,按照第一个降序 bool Model::comparePairs(const std::pair<real, int32_t> &l, const std::pair<real, int32_t> &r) { return l.first > r.first; } //模型预测函数 void Model::predict(const std::vector<int32_t>& input, int32_t k, std::vector<std::pair<real, int32_t>>& heap, Vector& hidden, Vector& output) const { assert(k > 0); heap.reserve(k + 1); computeHidden(input, hidden);//计算映射层,input是上下文 if (args_->loss == loss_name::hs) {//层次softmax,遍历树结构 dfs(k, 2 * osz_ - 2, 0.0, heap, hidden); } else {//其他则通过数组寻最大 findKBest(k, heap, hidden, output); } std::sort_heap(heap.begin(), heap.end(), comparePairs);//堆排序,得到最终的排序的值,降序排 } void Model::predict(const std::vector<int32_t>& input, int32_t k, std::vector<std::pair<real, int32_t>>& heap) { predict(input, k, heap, hidden_, output_); } //vector寻找topk---获得一个最小堆 void Model::findKBest(int32_t k, std::vector<std::pair<real, int32_t>>& heap, Vector& hidden, Vector& output) const { computeOutputSoftmax(hidden, output);//计算soft值 for (int32_t i = 0; i < osz_; i++) {//输出的大小 if (heap.size() == k && log(output[i]) < heap.front().first) {//小于topk中最小的那个,最小堆,损失值 continue; } heap.push_back(std::make_pair(log(output[i]), i));//加入堆中 std::push_heap(heap.begin(), heap.end(), comparePairs);//做对排序 if (heap.size() > k) {// std::pop_heap(heap.begin(), heap.end(), comparePairs);//移动最小的那个到最后面,且堆排序 heap.pop_back();//删除最后一个元素 } } } //层次softmax的topk获取 void Model::dfs(int32_t k, int32_t node, real score, std::vector<std::pair<real, int32_t>>& heap, Vector& hidden) const {//从根开始 if (heap.size() == k && score < heap.front().first) {//跳过 return; } if (tree[node].left == -1 && tree[node].right == -1) {//表示为叶子节点 heap.push_back(std::make_pair(score, node));//根到叶子的损失总值,叶子也就是词了 std::push_heap(heap.begin(), heap.end(), comparePairs);//维持最小堆,以损失值 if (heap.size() > k) { std::pop_heap(heap.begin(), heap.end(), comparePairs); heap.pop_back(); } return; } real f = sigmoid(wo_->dotRow(hidden, node - osz_));//计算出sigmod值,用于计算损失 dfs(k, tree[node].left, score + log(1.0 - f), heap, hidden);//左侧为1损失 dfs(k, tree[node].right, score + log(f), heap, hidden); } //更新操作 void Model::update(const std::vector<int32_t>& input, int32_t target, real lr) { assert(target >= 0); assert(target < osz_); if (input.size() == 0) return; computeHidden(input, hidden_);//计算映射层值 if (args_->loss == loss_name::ns) {//负采样的更新 loss_ += negativeSampling(target, lr); } else if (args_->loss == loss_name::hs) {//层次soft loss_ += hierarchicalSoftmax(target, lr); } else {//普通soft loss_ += softmax(target, lr); } nexamples_ += 1;//处理的样例数, if (args_->model == model_name::sup) {//分类 grad_.mul(1.0 / input.size()); } for (auto it = input.cbegin(); it != input.cend(); ++it) {//获取指向常数的指针 wi_->addRow(grad_, *it, 1.0);//迭代加上上下文的词向量,来更新上下文的词向量 } } //根据词频的向量,构建哈夫曼树或者初始化负采样的表 void Model::setTargetCounts(const std::vector<int64_t>& counts) { assert(counts.size() == osz_); if (args_->loss == loss_name::ns) { initTableNegatives(counts); } if (args_->loss == loss_name::hs) { buildTree(counts); } } //负采样的采样表获取 void Model::initTableNegatives(const std::vector<int64_t>& counts) { real z = 0.0; for (size_t i = 0; i < counts.size(); i++) { z += pow(counts[i], 0.5);//采取是词频的0.5次方 } for (size_t i = 0; i < counts.size(); i++) { real c = pow(counts[i], 0.5);//c值 //0,0,0,1,1,1,1,1,1,1,2,2类似这种有序的,0表示第一个词,占个坑,随机读取时,越多则概率越大。所有词的随机化 //最多重复次数,若是c/z足够小,会导致重复次数很少,最小是1次 //NEGATIVE_TABLE_SIZE含义是一个词最多重复不能够超过的值 for (size_t j = 0; j < c * NEGATIVE_TABLE_SIZE / z; j++) {//该词映射到表的维度上的取值情况,也就是不等分区映射到等区分段上 negatives.push_back(i); } } std::shuffle(negatives.begin(), negatives.end(), rng);//随机化一下,均匀随机化, } //对于词target获取负采样的值 int32_t Model::getNegative(int32_t target) { int32_t negative; do { negative = negatives[negpos];//由于表是随机化的,取值就是随机采的 negpos = (negpos + 1) % negatives.size();//下一个,不断的累加的,由于表格随机的,所以不需要pos随机了 } while (target == negative);//若是遇到为正样本则跳过 return negative; } //构建哈夫曼树过程 void Model::buildTree(const std::vector<int64_t>& counts) { tree.resize(2 * osz_ - 1); for (int32_t i = 0; i < 2 * osz_ - 1; i++) { tree[i].parent = -1; tree[i].left = -1; tree[i].right = -1; tree[i].count = 1e15; tree[i].binary = false; } for (int32_t i = 0; i < osz_; i++) { tree[i].count = counts[i]; } int32_t leaf = osz_ - 1; int32_t node = osz_; for (int32_t i = osz_; i < 2 * osz_ - 1; i++) { int32_t mini[2]; for (int32_t j = 0; j < 2; j++) { if (leaf >= 0 && tree[leaf].count < tree[node].count) { mini[j] = leaf--; } else { mini[j] = node++; } } tree[i].left = mini[0]; tree[i].right = mini[1]; tree[i].count = tree[mini[0]].count + tree[mini[1]].count; tree[mini[0]].parent = i; tree[mini[1]].parent = i; tree[mini[1]].binary = true; } for (int32_t i = 0; i < osz_; i++) { std::vector<int32_t> path; std::vector<bool> code; int32_t j = i; while (tree[j].parent != -1) { path.push_back(tree[j].parent - osz_); code.push_back(tree[j].binary); j = tree[j].parent; } paths.push_back(path); codes.push_back(code); } } //获取均匀损失值,平均每个样本的损失 real Model::getLoss() const { return loss_ / nexamples_; } //初始化sigmod表 void Model::initSigmoid() { t_sigmoid = new real[SIGMOID_TABLE_SIZE + 1]; for (int i = 0; i < SIGMOID_TABLE_SIZE + 1; i++) { real x = real(i * 2 * MAX_SIGMOID) / SIGMOID_TABLE_SIZE - MAX_SIGMOID; t_sigmoid[i] = 1.0 / (1.0 + std::exp(-x)); } } //初始化log函数的表,对于0~1之间的值 void Model::initLog() { t_log = new real[LOG_TABLE_SIZE + 1]; for (int i = 0; i < LOG_TABLE_SIZE + 1; i++) { real x = (real(i) + 1e-5) / LOG_TABLE_SIZE; t_log[i] = std::log(x); } } //log的处理 real Model::log(real x) const { if (x > 1.0) { return 0.0; } int i = int(x * LOG_TABLE_SIZE); return t_log[i]; } //获取sigmod值 real Model::sigmoid(real x) const { if (x < -MAX_SIGMOID) { return 0.0; } else if (x > MAX_SIGMOID) { return 1.0; } else { int i = int((x + MAX_SIGMOID) * SIGMOID_TABLE_SIZE / MAX_SIGMOID / 2); return t_sigmoid[i]; } } }
说明:
1:模型核心在于模型的更新即update函数,此时函数根据不同参数,选择不同的模型训练方法,共提供了3种方式
2:前两种方式的公有处理方式的提取,由于前两种方式的共有的更新。区别度在于选择部分词,还是将词累到共公节点上
四:fasttext.cc
/** * Copyright (c) 2016-present, Facebook, Inc. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. An additional grant * of patent rights can be found in the PATENTS file in the same directory. */ #include "fasttext.h" #include <math.h> #include <iostream> #include <iomanip> #include <thread> #include <string> #include <vector> #include <algorithm> namespace fasttext { //获取词向量 void FastText::getVector(Vector& vec, const std::string& word) { const std::vector<int32_t>& ngrams = dict_->getNgrams(word); vec.zero(); for (auto it = ngrams.begin(); it != ngrams.end(); ++it) { vec.addRow(*input_, *it);//ngram的累加 } if (ngrams.size() > 0) {//ngram均值,来体现词向量 vec.mul(1.0 / ngrams.size()); } } //保存词向量 void FastText::saveVectors() { std::ofstream ofs(args_->output + ".vec"); if (!ofs.is_open()) { std::cout << "Error opening file for saving vectors." << std::endl; exit(EXIT_FAILURE); } ofs << dict_->nwords() << " " << args_->dim << std::endl; Vector vec(args_->dim); for (int32_t i = 0; i < dict_->nwords(); i++) { std::string word = dict_->getWord(i);//获取词 getVector(vec, word);//获取词的向量 ofs << word << " " << vec << std::endl; } ofs.close(); } //保存模型 void FastText::saveModel() { std::ofstream ofs(args_->output + ".bin", std::ofstream::binary); if (!ofs.is_open()) { std::cerr << "Model file cannot be opened for saving!" << std::endl; exit(EXIT_FAILURE); } args_->save(ofs); dict_->save(ofs); input_->save(ofs); output_->save(ofs); ofs.close(); } //加载模型 void FastText::loadModel(const std::string& filename) { std::ifstream ifs(filename, std::ifstream::binary); if (!ifs.is_open()) { std::cerr << "Model file cannot be opened for loading!" << std::endl; exit(EXIT_FAILURE); } loadModel(ifs); ifs.close(); } void FastText::loadModel(std::istream& in) { args_ = std::make_shared<Args>(); dict_ = std::make_shared<Dictionary>(args_); input_ = std::make_shared<Matrix>(); output_ = std::make_shared<Matrix>(); args_->load(in); dict_->load(in); input_->load(in); output_->load(in); model_ = std::make_shared<Model>(input_, output_, args_, 0);//传的是指针,改变可以带回 if (args_->model == model_name::sup) {//构建模型的过程 model_->setTargetCounts(dict_->getCounts(entry_type::label)); } else { model_->setTargetCounts(dict_->getCounts(entry_type::word)); } } //打印提示信息 void FastText::printInfo(real progress, real loss) { real t = real(clock() - start) / CLOCKS_PER_SEC;//多少秒 real wst = real(tokenCount) / t;//每秒处理词数 real lr = args_->lr * (1.0 - progress);//学习率 int eta = int(t / progress * (1 - progress) / args_->thread); int etah = eta / 3600; int etam = (eta - etah * 3600) / 60; std::cout << std::fixed; std::cout << "\rProgress: " << std::setprecision(1) << 100 * progress << "%";//完成度 std::cout << " words/sec/thread: " << std::setprecision(0) << wst;//每秒每线程处理个数 std::cout << " lr: " << std::setprecision(6) << lr;//学习率 std::cout << " loss: " << std::setprecision(6) << loss;//损失度 std::cout << " eta: " << etah << "h" << etam << "m "; std::cout << std::flush; } void FastText::supervised(Model& model, real lr, const std::vector<int32_t>& line, const std::vector<int32_t>& labels) { if (labels.size() == 0 || line.size() == 0) return; std::uniform_int_distribution<> uniform(0, labels.size() - 1); int32_t i = uniform(model.rng); model.update(line, labels[i], lr); } //cbow模型 void FastText::cbow(Model& model, real lr, const std::vector<int32_t>& line) { std::vector<int32_t> bow; std::uniform_int_distribution<> uniform(1, args_->ws); for (int32_t w = 0; w < line.size(); w++) { int32_t boundary = uniform(model.rng);//随机取个窗口--每个词的窗口不一样 bow.clear(); for (int32_t c = -boundary; c <= boundary; c++) { if (c != 0 && w + c >= 0 && w + c < line.size()) { const std::vector<int32_t>& ngrams = dict_->getNgrams(line[w + c]);//ngrams语言 bow.insert(bow.end(), ngrams.cbegin(), ngrams.cend());//加入上下文中 } } model.update(bow, line[w], lr);//根据上下文更新 } } //skipgram模型 void FastText::skipgram(Model& model, real lr, const std::vector<int32_t>& line) { std::uniform_int_distribution<> uniform(1, args_->ws); for (int32_t w = 0; w < line.size(); w++) { int32_t boundary = uniform(model.rng);//窗口随机 const std::vector<int32_t>& ngrams = dict_->getNgrams(line[w]); for (int32_t c = -boundary; c <= boundary; c++) {//每个预测词的更新 if (c != 0 && w + c >= 0 && w + c < line.size()) { model.update(ngrams, line[w + c], lr);//ngram作为上下文 } } } } //测试模型 void FastText::test(std::istream& in, int32_t k) { int32_t nexamples = 0, nlabels = 0; double precision = 0.0; std::vector<int32_t> line, labels; while (in.peek() != EOF) { dict_->getLine(in, line, labels, model_->rng);//获取句子 dict_->addNgrams(line, args_->wordNgrams);//对句子增加其ngram if (labels.size() > 0 && line.size() > 0) { std::vector<std::pair<real, int32_t>> modelPredictions; model_->predict(line, k, modelPredictions);//预测 for (auto it = modelPredictions.cbegin(); it != modelPredictions.cend(); it++) { if (std::find(labels.begin(), labels.end(), it->second) != labels.end()) { precision += 1.0;//准确数 } } nexamples++; nlabels += labels.size(); } } std::cout << std::setprecision(3); std::cout << "P@" << k << ": " << precision / (k * nexamples) << std::endl; std::cout << "R@" << k << ": " << precision / nlabels << std::endl; std::cout << "Number of examples: " << nexamples << std::endl; } //预测 void FastText::predict(std::istream& in, int32_t k, std::vector<std::pair<real,std::string>>& predictions) const { std::vector<int32_t> words, labels; dict_->getLine(in, words, labels, model_->rng); dict_->addNgrams(words, args_->wordNgrams); if (words.empty()) return; Vector hidden(args_->dim); Vector output(dict_->nlabels()); std::vector<std::pair<real,int32_t>> modelPredictions; model_->predict(words, k, modelPredictions, hidden, output); predictions.clear(); for (auto it = modelPredictions.cbegin(); it != modelPredictions.cend(); it++) { predictions.push_back(std::make_pair(it->first, dict_->getLabel(it->second)));//不同标签的预测分 } } //预测 void FastText::predict(std::istream& in, int32_t k, bool print_prob) { std::vector<std::pair<real,std::string>> predictions; while (in.peek() != EOF) { predict(in, k, predictions); if (predictions.empty()) { std::cout << "n/a" << std::endl; continue; } for (auto it = predictions.cbegin(); it != predictions.cend(); it++) { if (it != predictions.cbegin()) { std::cout << ' '; } std::cout << it->second; if (print_prob) { std::cout << ' ' << exp(it->first); } } std::cout << std::endl; } } //获取词向量 void FastText::wordVectors() { std::string word; Vector vec(args_->dim); while (std::cin >> word) { getVector(vec, word);//获取一个词的词向量,不仅仅是对已知的,还能对未知进行预测 std::cout << word << " " << vec << std::endl; } } //句子的向量 void FastText::textVectors() { std::vector<int32_t> line, labels; Vector vec(args_->dim); while (std::cin.peek() != EOF) { dict_->getLine(std::cin, line, labels, model_->rng);//句子 dict_->addNgrams(line, args_->wordNgrams);//对应ngram vec.zero(); for (auto it = line.cbegin(); it != line.cend(); ++it) {//句子的词以及ngram的索引 vec.addRow(*input_, *it);//将词的向量求出和 } if (!line.empty()) {//求均值 vec.mul(1.0 / line.size()); } std::cout << vec << std::endl;//表示句子的词向量 } } void FastText::printVectors() { if (args_->model == model_name::sup) { textVectors(); } else {//词向量 wordVectors(); } } //训练线程 void FastText::trainThread(int32_t threadId) { std::ifstream ifs(args_->input); utils::seek(ifs, threadId * utils::size(ifs) / args_->thread); Model model(input_, output_, args_, threadId); if (args_->model == model_name::sup) { model.setTargetCounts(dict_->getCounts(entry_type::label)); } else { model.setTargetCounts(dict_->getCounts(entry_type::word)); } const int64_t ntokens = dict_->ntokens(); int64_t localTokenCount = 0; std::vector<int32_t> line, labels; while (tokenCount < args_->epoch * ntokens) {//epoch迭代次数 real progress = real(tokenCount) / (args_->epoch * ntokens);//进度 real lr = args_->lr * (1.0 - progress); localTokenCount += dict_->getLine(ifs, line, labels, model.rng); if (args_->model == model_name::sup) {//分不同函数进行处理 dict_->addNgrams(line, args_->wordNgrams); supervised(model, lr, line, labels); } else if (args_->model == model_name::cbow) { cbow(model, lr, line); } else if (args_->model == model_name::sg) { skipgram(model, lr, line); } if (localTokenCount > args_->lrUpdateRate) {//修正学习率 tokenCount += localTokenCount; localTokenCount = 0; if (threadId == 0 && args_->verbose > 1) { printInfo(progress, model.getLoss()); } } } if (threadId == 0 && args_->verbose > 0) { printInfo(1.0, model.getLoss()); std::cout << std::endl; } ifs.close(); } //加载Vectors过程, 字典 void FastText::loadVectors(std::string filename) { std::ifstream in(filename); std::vector<std::string> words; std::shared_ptr<Matrix> mat; // temp. matrix for pretrained vectors int64_t n, dim; if (!in.is_open()) { std::cerr << "Pretrained vectors file cannot be opened!" << std::endl; exit(EXIT_FAILURE); } in >> n >> dim; if (dim != args_->dim) { std::cerr << "Dimension of pretrained vectors does not match -dim option" << std::endl; exit(EXIT_FAILURE); } mat = std::make_shared<Matrix>(n, dim); for (size_t i = 0; i < n; i++) { std::string word; in >> word; words.push_back(word); dict_->add(word); for (size_t j = 0; j < dim; j++) { in >> mat->data_[i * dim + j]; } } in.close(); dict_->threshold(1, 0); input_ = std::make_shared<Matrix>(dict_->nwords()+args_->bucket, args_->dim); input_->uniform(1.0 / args_->dim); for (size_t i = 0; i < n; i++) { int32_t idx = dict_->getId(words[i]); if (idx < 0 || idx >= dict_->nwords()) continue; for (size_t j = 0; j < dim; j++) { input_->data_[idx * dim + j] = mat->data_[i * dim + j]; } } } //训练 void FastText::train(std::shared_ptr<Args> args) { args_ = args; dict_ = std::make_shared<Dictionary>(args_); if (args_->input == "-") { // manage expectations std::cerr << "Cannot use stdin for training!" << std::endl; exit(EXIT_FAILURE); } std::ifstream ifs(args_->input); if (!ifs.is_open()) { std::cerr << "Input file cannot be opened!" << std::endl; exit(EXIT_FAILURE); } dict_->readFromFile(ifs); ifs.close(); if (args_->pretrainedVectors.size() != 0) { loadVectors(args_->pretrainedVectors); } else { input_ = std::make_shared<Matrix>(dict_->nwords()+args_->bucket, args_->dim); input_->uniform(1.0 / args_->dim); } if (args_->model == model_name::sup) { output_ = std::make_shared<Matrix>(dict_->nlabels(), args_->dim); } else { output_ = std::make_shared<Matrix>(dict_->nwords(), args_->dim); } output_->zero(); start = clock(); tokenCount = 0; std::vector<std::thread> threads; for (int32_t i = 0; i < args_->thread; i++) { threads.push_back(std::thread([=]() { trainThread(i); })); } for (auto it = threads.begin(); it != threads.end(); ++it) { it->join(); } model_ = std::make_shared<Model>(input_, output_, args_, 0); saveModel(); if (args_->model != model_name::sup) { saveVectors(); } } }