2024.10.2 冒泡
- 证明:\(\Large \lim\limits_{x\rightarrow 0} \frac{\pi\sin x}{x} \approx \lim\limits_{x\rightarrow\infty}(\frac{x+1}{x})^x\)
- 易得:
\(\lim\limits_{x\rightarrow 0} \frac{\pi\sin x}{x} =\pi \approx 3.1415926 \dots\)
\(\lim\limits_{x\rightarrow\infty}(\frac{x+1}{x})^x =e \approx 2.71828 \dots\) - 因为 \(3.1415926\dots \approx 3\) 且 \(2.71828\dots \approx 3\) ,所以 \(\Large \pi \approx e\)
- 总结:\(\Large \pi \approx e\)
**真是一个简洁而又美丽的公式s