Java实现的简单神经网络(基于Sigmoid激活函数)
主体代码
NeuronNetwork.java
package com.rockbb.math.nnetwork; import java.util.ArrayList; import java.util.Arrays; import java.util.List; public class NeutonNetwork { private List<NeuronLayer> layers; public NeuronNetwork(int[] sizes, double bpFactor, Activator activator) { layers = new ArrayList<>(sizes.length - 1); int inputSize = sizes[0]; for (int i = 1; i < sizes.length; i++) { NeuronLayer layer = new NeuronLayer(inputSize, sizes[i], activator, bpFactor); layers.add(layer); inputSize = sizes[i]; } for (int i = 0; i < layers.size() - 1; i++) { layers.get(i).setNext(layers.get(i + 1)); } } public List<NeuronLayer> getLayers() {return layers;} public void setLayers(List<NeuronLayer> layers) {this.layers = layers;} public double getError() { return layers.get(layers.size() - 1).getError(); } public List<Double> predict(List<Double> inputs) { List<Double> middle = inputs; for (int i = 0; i < layers.size(); i++) { middle = layers.get(i).forward(middle); } return middle; } public void backward() { for (int j= layers.size() - 1; j >=0; j--) { layers.get(j).backward(); } } public void fillTargets(List<Double> targets) { layers.get(layers.size() - 1).fillTargets(targets); } @Override public String toString() { StringBuilder sb = new StringBuilder(); for (int j = 0; j < layers.size(); j++) { sb.append(layers.get(j).toString()); } return sb.toString(); } public static String listToString(List<Double> list) { StringBuilder sb = new StringBuilder(); for (Double t : list) { sb.append(String.format("% 10.8f ", t)); } return sb.toString(); } public static void main(String[] args) { int[] sz = new int[]{2, 4, 1}; double[][] trainData = {{0d, 0d},{0d, 1d},{1d, 0d},{1d, 1d}}; double[][] targetDate = {{0d},{1d},{1d},{0d}}; NeuronNetwork nn = new NeuronNetwork(sz, 0.5d, new SigmoidActivator()); for (int kk = 0; kk < 20000; kk++) { double totalError = 0d; for (int i = 0; i < trainData.length; i++) { List<Double> inputs = Arrays.asList(trainData[i][0], trainData[i][1]); List<Double> targets = Arrays.asList(targetDate[i][0]); nn.fillTargets(targets); nn.predict(inputs); //System.out.print(nn); System.out.println(String.format("kk:%5d, i:%d, error: %.8f\n", kk, i, nn.getError())); totalError += nn.getError(); nn.backward(); } System.out.println(String.format("kk:%5d, Total Error: %.8f\n\n", kk, totalError)); if (totalError < 0.0001) { System.out.println(nn); break; } } System.out.println(nn); } }
NeuronLayer.java
package com.rockbb.math.nnetwork; import java.util.ArrayList; import java.util.List; public class NeuronLayer { private int inputSize; private List<Neuron> neurons; private double bias; private Activator activator; private NeuronLayer next; private double bpFactor; private List<Double> inputs; public NeuronLayer(int inputSize, int size, Activator activator, double bpFactor) { this.inputSize = inputSize; this.activator = activator; this.bpFactor = bpFactor; this.bias = Math.random() - 0.5; this.neutrons = new ArrayList<>(size); for (int i = 0; i < size; i++) { Neuron neuron = new Neuron(this, inputSize); neurons.add(neuron); } } public int getInputSize() {return inputSize;} public void setInputSize(int inputSize) {this.inputSize = inputSize;} public List<Neuron> getNeurons() {return neurons;} public void setNeurons(List<Neuron> neurons) {this.neurons = neurons;} public double getBias() {return bias;} public void setBias(double bias) {this.bias = bias;} public Activator getActivator() {return activator;} public void setActivator(Activator activator) {this.activator = activator;} public NeutronLayer getNext() {return next;} public void setNext(NeutronLayer next) {this.next = next;} public List<Double> forward(List<Double> inputs) { this.inputs = inputs; List<Double> outputs = new ArrayList<Double>(neurons.size()); for (int i = 0; i < neurons.size(); i++) { outputs.add(0d); } for (int i = 0; i < neurons.size(); i++) { double output = neurons.get(i).forward(inputs); outputs.set(i, output); } return outputs; } public void backward() { if (this.next == null) { // If this is the output layer, calculate delta for each neutron double totalDelta = 0d; for (int i = 0; i < neurons.size(); i++) { Neutron n = neurons.get(i); double delta = -(n.getTarget() - n.getOutput()) * activator.backwardDelta(n.getOutput()); n.setBpDelta(delta); totalDelta += delta; // Reflect to each weight under this neuron for (int j = 0; j < n.getWeights().size(); j++) { n.getWeights().set(j, n.getWeights().get(j) - bpFactor * delta * inputs.get(j)); } } // Relfect to bias this.bias = this.bias - bpFactor * totalDelta / neutrons.size(); } else { // if this is the hidden layer double totalDelta = 0d; for (int i = 0; i < neurons.size(); i++) { Neuron n = neurons.get(i); List<Neuron> downNeurons = next.getNeurons(); double delta = 0; for (int j = 0; j < downNeurons.size(); j++) { delta += downNeurons.get(j).getBpDelta() * downNeurons.get(j).getWeights().get(i); } delta = delta * activator.backwardDelta(n.getOutput()); n.setBpDelta(delta); totalDelta += delta; // Reflect to each weight under this neuron for (int j = 0; j < n.getWeights().size(); j++) { n.getWeights().set(j, n.getWeights().get(j) - bpFactor * delta * inputs.get(j)); } } // Relfect to bias this.bias = this.bias - bpFactor * totalDelta / neutrons.size(); } } public double getError() { double totalError = 0d; for (int i = 0; i < neurons.size(); i++) { totalError += Math.pow(neurons.get(i).getError(), 2); } return totalError / (2 * neurons.size()); } public void fillTargets(List<Double> targets) { for (int i = 0; i < neurons.size(); i++) { neurons.get(i).setTarget(targets.get(i)); } } public double filter(double netInput) { return activator.forward(netInput + bias); } @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append(String.format("Input size: %d, bias: %.8f\n", inputSize, bias)); for (int i = 0; i < neurons.size(); i++) { sb.append(String.format("%3d: %s\n", i, neurons.get(i).toString())); } return sb.toString(); } }
Neuron.java
package com.rockbb.math.nnetwork; import java.util.ArrayList; import java.util.List; public class Neuron { private NeuronLayer layer; private List<Double> weights; private double output; private double target; private double bpDelta; public Neuron(NeuronLayer layer, int inputSize) { this.layer = layer; this.weights = new ArrayList<>(inputSize); for (int i = 0; i < inputSize; i++) { // Initialize each weight with value [0.1, 1) weights.add(Math.random() * 0.9 + 0.1); } this.bpDelta = 0d; } public NeuronLayer getLayer() {return layer;} public void setLayer(NeuronLayer layer) {this.layer = layer;} public List<Double> getWeights() {return weights;} public void setWeights(List<Double> weights) {this.weights = weights;} public double getOutput() {return output;} public void setOutput(double output) {this.output = output;} public double getTarget() {return target;} public void setTarget(double target) {this.target = target;} public double getBpDelta() {return bpDelta;} public void setBpDelta(double bpDelta) {this.bpDelta = bpDelta;} public double calcNetInput(List<Double> inputs) { double netOutput = 0f; for (int i = 0; i < weights.size(); i++) { netOutput += inputs.get(i) * weights.get(i); } return netOutput; } public double forward(List<Double> inputs) { double netInput = calcNetInput(inputs); this.output = layer.filter(netInput); return this.output; } public double getError() { return target - output; } @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append(String.format("O:% 10.8f T:% 10.8f D:% 10.8f w:{", output, target, bpDelta)); for (int i = 0; i < weights.size(); i++) { sb.append(String.format("% 10.8f ", weights.get(i))); } sb.append('}'); return sb.toString(); } }
激活函数
Activator.java
package com.rockbb.math.nnetwork; public interface Activator { double forward(double input); double backwardDelta(double output); }
SigmoidActivator.java
package com.rockbb.math.nnetwork; public class SigmoidActivator implements Activator { public double forward(double input) { return 1 / (1 + Math.exp(-input)); } public double backwardDelta(double output) { return output * (1 - output); } }
在同样的训练数据和误差目标下, 比 http://www.emergentmind.com/neural-network 使用更少的训练次数.
使用Sigmoid激活函数工作正常.
使用ReLu激活函数时总会使某个Neuron冻结, 不能收敛, 待检查