欧拉公式 Euler's Formula

欧拉公式是数学中最重要的公式之一, 它涉及到了复数, 无理数, 三角函数, 简单优美

\(e^{i\theta} = cos(\theta) + isin(\theta)\)

欧拉公式代表的含义并不是欧拉最先发现的, 1714年英国物理学家和数学家罗杰·柯茨在一个公式中建立了对数, 三角函数和虚数之间的关系, 在1740年前后, 欧拉通过另一种形式得到了等价的公式.

\(i\theta = ln\left(cos(\theta) + isin(\theta)\right)\)

如果把 \(\theta\) 的值特殊化为 \(\theta = \pi\),就得到了欧拉恒等式

\(e^{\pi i} = -1\)

自然常数e

自然常数e是一个特殊的常数, 它的特性是 $ \left ( e^{x} \right )' = e^{x} $, 即指数函数的导数还是自身

e的定义如下

$ e = \lim_{x \to 0} (1 + x)^{\frac{1}{x}} $

$ e = \lim_{x \to \infty} (1 + \frac{1}{x})^{x}$

这个极限收敛, 值约为2.71828

\(e^x\) 的导数不变性的证明:

因为当e趋于无穷小时, $ e = \lim_{x \to 0} (1 + x)^{\frac{1}{x}} $ (这里实际上包含一个物理意义, 在 \(\lim_{x \to 0}\)\(e^x\)\(y=x\) 的曲线是无限接近的)

对其变形可得

$ e^x = lim_{x \to 0}1 + x$,

$ x = lim_{x \to 0}e^x - 1$,

$ 1 = lim_{x \to 0} \frac{e^{x} - 1}{x}$,

于是根据导数的定义,对于 \(e^x\), 我们给自变量x一个微小增量dx,可以得到

\(y' = \frac{e^{(x+dx)}-e^{x}}{dx}\)

\(= \frac{e^x * e^{dx} - e^x}{dx}\)

\(= e^x * \frac{e^{dx} - 1}{dx}\), 将上面的等式代入

$= e^x * 1 = e^x = y $

自然常数e的指数函数

\(f(x) = e^x\) 的泰勒级数展开

\(exp(x) = 1 + \frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + ... = \sum_{i=0}^{n} \frac{x^n}{n!}\)

\(x = i\theta\) 时, \(exp(i\theta)\) 就成为了复平面上的一个圆

\(e^{i(0 + 2n\pi)} = 1\)

\(e^{i(\frac{\pi}{2} + 2n\pi)} = i\)

\(e^{i(\pi + 2n\pi)} = -1\)

\(e^{i(\frac{3\pi}{2} + 2n\pi)} = -i\)

数值验证

用一小段c代码验证 \(e^{i(\pi + 2n\pi)} = -1\)

#define PI      3.1415926
#define STEP    18

int main(void)
{
    int32_t i = 0;
    int64_t factorial = 1;
    double real = 1, imaginary = 0, pp = 1, curr;
    for (i = 0; i < STEP; i++)
    {
        pp = pp * PI;
        factorial = factorial * (i + 1);
        curr = pp / factorial;
        if (i % 4 == 0) imaginary += curr;
        else if (i % 4 == 1) real -= curr;
        else if (i % 4 == 2) imaginary -= curr;
        else real += curr;
        printf("%3d - %20.6f / %25lu = %f, %10f %10f\r\n", i, pp, factorial, curr, real, imaginary);
    }
}

当step为18时, 其输出为

  0 -             3.141593 /                         1 = 3.141593,   1.000000   3.141593
  1 -             9.869604 /                         2 = 4.934802,  -3.934802   3.141593
  2 -            31.006275 /                         6 = 5.167713,  -3.934802  -2.026120
  3 -            97.409084 /                        24 = 4.058712,   0.123910  -2.026120
  4 -           306.019659 /                       120 = 2.550164,   0.123910   0.524044
  5 -           961.389095 /                       720 = 1.335263,  -1.211353   0.524044
  6 -          3020.292867 /                      5040 = 0.599264,  -1.211353  -0.075221
  7 -          9488.529721 /                     40320 = 0.235331,  -0.976022  -0.075221
  8 -         29809.094757 /                    362880 = 0.082146,  -0.976022   0.006925
  9 -         93648.031501 /                   3628800 = 0.025807,  -1.001829   0.006925
 10 -        294203.962770 /                  39916800 = 0.007370,  -1.001829  -0.000445
 11 -        924268.992327 /                 479001600 = 0.001930,  -0.999900  -0.000445
 12 -       2903676.626705 /                6227020800 = 0.000466,  -0.999900   0.000021
 13 -       9122169.003250 /               87178291200 = 0.000105,  -1.000004   0.000021
 14 -      28658138.636560 /             1307674368000 = 0.000022,  -1.000004  -0.000001
 15 -      90032196.270391 /            20922789888000 = 0.000004,  -1.000000  -0.000001
 16 -     282844481.564807 /           355687428096000 = 0.000001,  -1.000000   0.000000
 17 -     888582130.234833 /          6402373705728000 = 0.000000,  -1.000000   0.000000

应用

欧拉公式中, \(cos(\theta)\)是实部, \(sin(\theta)\)是虚部, 分别可以表示为
\(cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + ... = \sum_{i=0}^{n} (-1)^n\frac{x^{2n}}{2n!}\)

\(sin(x) = \frac{x^1}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - ... = \sum_{i=0}^{n} (-1)^n\frac{x^{2n + 1}}{(2n+1)!}\)

这样就建立了三角函数和普通指数运算的桥梁, 在计算机上, 计算三角函数 sin, cos 以及其派生出的其他数值, 都可以通过泰勒级数进行计算, 根据需要可以通过循环次数控制精度.

参考

posted on 2022-12-04 12:11  Milton  阅读(903)  评论(0编辑  收藏  举报

导航