素数相关的算法
素数计算
素数相关的计算,主要有这几个方面:
- 列出某个范围内的所有素数;
- 判断某个数是否为素数;
- 其实是2)的扩展,快速获取一个大素数
列出某个范围的所有素数
这个可以分成两种类型,一种是列出从1至N的所有素数,另一个是在一个较大数值的区间,列出所有素数。
列出1至N的所有素数
1) 普通计算方式, 校验每个数字
优化的几处:
- 判断是否整除时, 除数使用小于自身的平方根的素数
- 大于3的素数, 都在6的整数倍两侧, 即 6m - 1 和 6m + 1
public class DemoPrime { private int[] primes; private int max; private int pos; private int total; public DemoPrime(int max) { this.max = max; int length = max / 3; primes = new int[length]; pos = 0; total = 0; } private void put(int prime) { primes[pos] = prime; if (pos < primes.length - 1) { pos++; } else { throw new RuntimeException("Length exceed"); } } private boolean isPrime(int num) { int limit = (int)Math.sqrt(num); for (int i = 0; i < pos; i++) { if (primes[i] > limit) { break; } total++; if (num % primes[i] == 0) return false; } return true; } public void calculate() { put(2); put(3); int val = 1; for (int i = 0; val <= max - 6;) { val += 4; if (isPrime(val)) { put(val); } val += 2; if (isPrime(val)) { put(val); } } System.out.println("Tried: " + total); } public void print() { System.out.println("Total: " + pos); /*for (int i = 0; i < pos; i++) { System.out.println(primes[i]); }*/ } public static void main(String[] args) { DemoPrime dp = new DemoPrime(10000000); dp.calculate(); dp.print(); } }
2) 使用数组填充的方式,即Sieve of Eratosthenes 埃拉托色尼筛法
一次性创建大小为N的int数组的方式, 在每得到一个素数时, 将其整数倍的下标(除自身以外)的元素都置位, 并且只需要遍历到N的平方根处. 最后未置位的元素即为素数, 在过程中可以统计素数个数. 这种方法比前一种效率高一个数量级.
public class DemoPrime2 { private int[] cells; private int max; private int total; public DemoPrime2(int max) { this.max = max; cells = new int[max]; total = max; } private void put(int prime) { int i = prime + prime; while (i < max) { if (cells[i] == 0) { cells[i] = 1; total--; } i += prime; } } public void calculate() { total -= 2; // Exclude 0 and 1 put(2); put(3); int limit = (int)Math.sqrt(max); for (int i = 4; i <= limit; i++) { if (cells[i] == 0) { put(i); } } } public void print() { System.out.println("Total: " + total); /*for (int i = 2; i < max; i++) { if (cells[i] == 0) { System.out.println(i); } }*/ } public static void main(String[] args) throws InterruptedException { DemoPrime2 dp = new DemoPrime2(10000000); Thread.sleep(1000L); long ts = System.currentTimeMillis(); dp.calculate(); dp.print(); long elapse = System.currentTimeMillis() - ts; System.out.println("Time: " + elapse); } }
在一个较大数值的区间,列出所有素数
这个问题等价于,在这个区间里对每一个数判断是否为素数
判断大数是否为素数
对大数进行素数判断,常用的是Miller Rabin算法
https://en.wikibooks.org/wiki/Algorithm_Implementation/Mathematics/Primality_Testing
在JDK中,BigInteger有一个isProbablePrime(int certainty)方法用于判断大数是否为素数,里面联合使用了Miller-Rabin和Lucas-Lehmer算法。后者卢卡斯莱默算法仅用于检测值为2p - 1的数的素性。
Miller-Rabin算法
对于大数的素性判断,目前Miller-Rabin算法应用最广泛。Miller Rabin算法基于费马小定理和二次探测定理,其中
费马小定理:若P为素数,且有0<a<p,则a^(p-1) % p = 1
二次探测定理:x*x % p == 1, 若P为素数, 则x的解只能是x = 1或者x = p - 1
一般底数为随机选取,但当待测数不太大时,选择测试底数就有一些技巧了。比如,如果被测数小于4 759 123 141,那么只需要测试三个底数2, 7和61就足够了。当然,你测试的越多,正确的范围肯定也越大。如果你每次都用前7个素数(2, 3, 5, 7, 11, 13和17)进行测试,所有不超过341 550 071 728 320的数都是正确的。如果选用2, 3, 7, 61和24251作为底数,那么10^16内唯一的强伪素数为46 856 248 255 981。这样的一些结论使得Miller-Rabin算法在OI中非常实用。通常认为,Miller-Rabin素性测试的正确率可以令人接受,随机选取k个底数进行测试算法的失误率大概为4^(-k)。
/** * * Java Program to Implement Miller Rabin Primality Test Algorithm **/ import java.util.Scanner; import java.util.Random; import java.math.BigInteger; /** Class MillerRabin **/ public class MillerRabin { /** Function to check if prime or not **/ public boolean isPrime(long n, int iteration) { /** base case **/ if (n == 0 || n == 1) return false; /** base case - 2 is prime **/ if (n == 2) return true; /** an even number other than 2 is composite **/ if (n % 2 == 0) return false; long s = n - 1; while (s % 2 == 0) s /= 2; Random rand = new Random(); for (int i = 0; i < iteration; i++) { long r = Math.abs(rand.nextLong()); long a = r % (n - 1) + 1, temp = s; long mod = modPow(a, temp, n); while (temp != n - 1 && mod != 1 && mod != n - 1) { mod = mulMod(mod, mod, n); temp *= 2; } if (mod != n - 1 && temp % 2 == 0) return false; } return true; } /** Function to calculate (a ^ b) % c **/ public long modPow(long a, long b, long c) { long res = 1; for (int i = 0; i < b; i++) { res *= a; res %= c; } return res % c; } /** Function to calculate (a * b) % c **/ public long mulMod(long a, long b, long mod) { return BigInteger.valueOf(a).multiply(BigInteger.valueOf(b)).mod(BigInteger.valueOf(mod)).longValue(); } /** Main function **/ public static void main(String[] args) { Scanner scan = new Scanner(System.in); System.out.println("Miller Rabin Primality Algorithm Test\n"); /** Make an object of MillerRabin class **/ MillerRabin mr = new MillerRabin(); /** Accept number **/ System.out.println("Enter number\n"); long num = scan.nextLong(); /** Accept number of iterations **/ System.out.println("\nEnter number of iterations"); int k = scan.nextInt(); /** check if prime **/ boolean prime = mr.isPrime(num, k); if (prime) System.out.println("\n" + num + " is prime"); else System.out.println("\n" + num + " is composite"); } }
Miller-Rabin算法是一个RP算法。RP是时间复杂度的一种,主要针对判定性问题。一个算法是RP算法表明它可以在多项式的时间里完成,对于答案为否定的情形能够准确做出判断,但同时它也有可能把对的判成错的(错误概率不能超过1/2)。RP算法是基于随机化的,因此多次运行该算法可以降低错误率。还有其它的素性测试算法也是概率型的,比如Solovay-Strassen算法。
/** * Class SolovayStrassen **/ public class SolovayStrassen { /** * Function to calculate jacobi (a/b) **/ public long Jacobi(long a, long b) { if (b <= 0 || b % 2 == 0) return 0; long j = 1L; if (a < 0) { a = -a; if (b % 4 == 3) j = -j; } while (a != 0) { while (a % 2 == 0) { a /= 2; if (b % 8 == 3 || b % 8 == 5) j = -j; } long temp = a; a = b; b = temp; if (a % 4 == 3 && b % 4 == 3) j = -j; a %= b; } if (b == 1) return j; return 0; } /** * Function to check if prime or not **/ public boolean isPrime(long n, int iteration) { /** base case **/ if (n == 0 || n == 1) return false; /** base case - 2 is prime **/ if (n == 2) return true; /** an even number other than 2 is composite **/ if (n % 2 == 0) return false; Random rand = new Random(); for (int i = 0; i < iteration; i++) { long r = Math.abs(rand.nextLong()); long a = r % (n - 1) + 1; long jacobian = (n + Jacobi(a, n)) % n; long mod = modPow(a, (n - 1) / 2, n); if (jacobian == 0 || mod != jacobian) return false; } return true; } /** * Function to calculate (a ^ b) % c **/ public long modPow(long a, long b, long c) { long res = 1; for (int i = 0; i < b; i++) { res *= a; res %= c; } return res % c; } /** * Main function **/ public static void main(String[] args) { Scanner scan = new Scanner(System.in); System.out.println("SolovayStrassen Primality Algorithm Test\n"); /** Make an object of SolovayStrassen class **/ SolovayStrassen ss = new SolovayStrassen(); /** Accept number **/ System.out.println("Enter number\n"); long num = scan.nextLong(); /** Accept number of iterations **/ System.out.println("\nEnter number of iterations"); int k = scan.nextInt(); /** check if prime **/ boolean prime = ss.isPrime(num, k); if (prime) System.out.println("\n" + num + " is prime"); else System.out.println("\n" + num + " is composite"); } }
AKS算法
AKS最关键的重要性在于它是第一个被发表的一般的、多项式的、确定性的和无仰赖的素数判定算法。先前的算法至多达到了其中三点,但从未达到全部四个。
- AKS算法可以被用于检测任何一般的给定数字是否为素数。很多已知的高速判定算法只适用于满足特定条件的素数。例如,卢卡斯-莱默检验法仅对梅森素数适用,而Pépin测试仅对费马数适用。
- 算法的最长运行时间可以被表为一个目标数字长度的多项式。ECPP和APR能够判断一个给定数字是否为素数,但无法对所有输入给出多项式时间范围。
- 算法可以确定性地判断一个给定数字是否为素数。随机测试算法,例如米勒-拉宾检验和Baillie–PSW,可以在多项式时间内对给定数字进行校验,但只能给出概率性的结果。
- AKS算法并未“仰赖”任何未证明猜想。一个反例是确定性米勒检验:该算法可以在多项式时间内对所有输入给出确定性结果,但其正确性却基于尚未被证明的广义黎曼猜想。
AKS算法的时间复杂度是 O(log(n)), 比Miller-Rabin要慢
/*************************************************************************** * Team ************** * Arijit Banerjee * Suchit Maindola * Srikanth Manikarnike * ************** * This is am implementation of Agrawal–Kayal–Saxena primality test in java. * ************** * The algorithm is - * 1. l <- log n * 2. for i<-2 to l * a. if an is a power fo l * return COMPOSITE * 3. r <- 2 * 4. while r < n * a. if gcd( r, n) != 1 * return COMPSITE * b. if sieve marked n as PRIME * q <- largest factor (r-1) * o < - r-1 / q * k <- 4*sqrt(r) * l * if q > k and n <= r * return PRIME * c. x = 2 * d. for a <- 1 to k * if (x + a) ^n != x^n + mod (x^r - 1, n) * return COMPOSITE * e. return PRIME */ public class DemoAKS { private int log; private boolean sieveArray[]; private int SIEVE_ERATOS_SIZE = 100000000; /* aks constructor */ public DemoAKS(BigInteger input) { sieveEratos(); boolean result = checkIsPrime(input); if (result) { System.out.println("1"); } else { System.out.println("0"); } } /* function to check if a given number is prime or not */ public boolean checkIsPrime(BigInteger n) { BigInteger lowR, powOf, x, leftH, rightH, fm, aBigNum; int totR, quot, tm, aCounter, aLimit, divisor; log = (int) logBigNum(n); if (findPower(n, log)) { return false; } lowR = new BigInteger("2"); x = lowR; totR = lowR.intValue(); for (lowR = new BigInteger("2"); lowR.compareTo(n) < 0; lowR = lowR.add(BigInteger.ONE)) { if ((lowR.gcd(n)).compareTo(BigInteger.ONE) != 0) { return false; } totR = lowR.intValue(); if (checkIsSievePrime(totR)) { quot = largestFactor(totR - 1); divisor = (int) (totR - 1) / quot; tm = (int) (4 * (Math.sqrt(totR)) * log); powOf = mPower(n, new BigInteger("" + divisor), lowR); if (quot >= tm && (powOf.compareTo(BigInteger.ONE)) != 0) { break; } } } fm = (mPower(x, lowR, n)).subtract(BigInteger.ONE); aLimit = (int) (2 * Math.sqrt(totR) * log); for (aCounter = 1; aCounter < aLimit; aCounter++) { aBigNum = new BigInteger("" + aCounter); leftH = (mPower(x.subtract(aBigNum), n, n)).mod(n); rightH = (mPower(x, n, n).subtract(aBigNum)).mod(n); if (leftH.compareTo(rightH) != 0) return false; } return true; } /* function that computes the log of a big number*/ public double logBigNum(BigInteger bNum) { String str; int len; double num1, num2; str = "." + bNum.toString(); len = str.length() - 1; num1 = Double.parseDouble(str); num2 = Math.log10(num1) + len; return num2; } /*function that computes the log of a big number input in string format*/ public double logBigNum(String str) { String s; int len; double num1, num2; len = str.length(); s = "." + str; num1 = Double.parseDouble(s); num2 = Math.log10(num1) + len; return num2; } /* function to compute the largest factor of a number */ public int largestFactor(int num) { int i; i = num; if (i == 1) return i; while (i > 1) { while (sieveArray[i] == true) { i--; } if (num % i == 0) { return i; } i--; } return num; } /*function given a and b, computes if a is power of b */ public boolean findPowerOf(BigInteger bNum, int val) { int l; double len; BigInteger low, high, mid, res; low = new BigInteger("10"); high = new BigInteger("10"); len = (bNum.toString().length()) / val; l = (int) Math.ceil(len); low = low.pow(l - 1); high = high.pow(l).subtract(BigInteger.ONE); while (low.compareTo(high) <= 0) { mid = low.add(high); mid = mid.divide(new BigInteger("2")); res = mid.pow(val); if (res.compareTo(bNum) < 0) { low = mid.add(BigInteger.ONE); } else if (res.compareTo(bNum) > 0) { high = mid.subtract(BigInteger.ONE); } else if (res.compareTo(bNum) == 0) { return true; } } return false; } /* creates a sieve array that maintains a table for COMPOSITE-ness * or possibly PRIME state for all values less than SIEVE_ERATOS_SIZE */ public boolean checkIsSievePrime(int val) { if (sieveArray[val] == false) { return true; } else { return false; } } long mPower(long x, long y, long n) { long m, p, z; m = y; p = 1; z = x; while (m > 0) { while (m % 2 == 0) { m = (long) m / 2; z = (z * z) % n; } m = m - 1; p = (p * z) % n; } return p; } /* function, given a and b computes if a is a power of b */ boolean findPower(BigInteger n, int l) { int i; for (i = 2; i < l; i++) { if (findPowerOf(n, i)) { return true; } } return false; } BigInteger mPower(BigInteger x, BigInteger y, BigInteger n) { BigInteger m, p, z, two; m = y; p = BigInteger.ONE; z = x; two = new BigInteger("2"); while (m.compareTo(BigInteger.ZERO) > 0) { while (((m.mod(two)).compareTo(BigInteger.ZERO)) == 0) { m = m.divide(two); z = (z.multiply(z)).mod(n); } m = m.subtract(BigInteger.ONE); p = (p.multiply(z)).mod(n); } return p; } /* array to populate sieve array * the sieve array looks like this * * y index -> 0 1 2 3 4 5 6 ... n * x index 1 * | 2 T - T - T ... * \/ 3 T - - T ... * 4 T - - ... * . T - ... * . T ... * n * * * * */ public void sieveEratos() { int i, j; sieveArray = new boolean[SIEVE_ERATOS_SIZE + 1]; sieveArray[1] = true; for (i = 2; i * i <= SIEVE_ERATOS_SIZE; i++) { if (!sieveArray[i]) { for (j = i * i; j <= SIEVE_ERATOS_SIZE; j += i) { sieveArray[j] = true; } } } } public static void main(String[] args) { new DemoAKS(new BigInteger("100000217")); } }