Spark环境的搭建与运行

Spark本地安装与配置

  • 下载spark后解压,并cd到解压目录下
  • 运行实例程序测试是否一切正常
./bin/run-example org.apache.spark.examples.SparkPi
  • 在本地模式下设定要使用的线程数目local[N]
master=local[2] ./bin/run-example org.apache.spark.examples.SparkPi

Spark集群

  • Spark集群由两类程序构成:一个驱动程序和多个执行程序。
  • 本地模式中,所有的处理都是运行在一个JVM内的。
  • 如果要在一个Spark单机集群上运行示例代码,只要传入猪截点的IP和PROT端口号
master=spark://IP:PORT ./bin/run-example org.apache.spark.examples.SparkPi

Spark 编程模型

  • SparkContext 和 Spark Shell

SparkContext类和SparkConf类

  • 创建一个四线程的SparkContext类
val conf = new SparkConf()
.setAppName("Text Spark APP")
.setMaster("local[4]")
val sc = new SparkContext(conf)
or
val sc = new SparkContext("local[4]", "Test Spark App")

Spark shell

  • 进入程序主目录下,运行如下代码启动 Spark shell (Scala语言的shell)
./bin/spark shell
  • 启动spark shell 之后会自动初始化一个SparkContext对象。
  • 进入主目录下,运行如下代码启动Python shell。
./bin/pyspark
  • python下的SparkContext对象可以通过Python变量sc来调用。

弹性分布式数据集

1.创建RDD

  • 从现有的集合创建RDD
val collection = List("a", "b", "c", "d", "e")
val rddFromCollection = sc.parallelize(collection)
  • 也可以从本地文件中创建RDD
val rddFromTextFile = sc.textFile("license")

2.Spark操作

  • Spark编程模式下,所有的操作都被分为转换(transformation)和执行(action)。
  • 最常见的转换操作就是map,该操作对一个RDD的每一条记录都执行某个函数,从而将输入映射称为新的输出。
  • 实例
  • 对于之前创建的一个由若干String构成的RDD对象,通过map将每一个字符串转换为一个整数,返回一个由若干Int组成RDD对象。
val intsFromStringsRDD = rddFromTextFile.map(line => line.size)
  • 执行count返回RDD中的记录数目。
intsFromStringsRDD.cout
  • 如果要计算每行字符串的平均长度,可以先sum计算所有记录的总长,再除以总的记录数目。
val sumOfRecords = intsFromStringsRDD.sum
val numRecords = intsFromStringsRDD.count
val aveLengthOfRecord = sumOfRecords / numRecords
or
val aveLengthOfRecordChained =rddFromTextFile.map(line => line.size).sum/rddFromTextFile.count
  • Spark中转换操作是延后的。在RDD上调用一个转换操作并不会立即触发相应的计算。相反,这些转换会链接起来,并只有在执行操作时才会被高效的计算。
  • 实例
  • 下面的代码不会触发实际的操作
val transformedRDD = rddFromTextFile.map(line => line.size).filter(size =>size>10).map(size =>size*2)
  • 调用如下执行操作,计算将会被触发
val computation = transformedRDD.sum

3.RDD缓存策略

  • 将RDD缓存在集群的内存中。
rddFromTextFile.cache
  • 首次缓存会花费一些时间,下一次访问就会很快,数据可以直接从内存中读取,从而减少I/O操作。

3.广播变量和累加变量

  • 两类特殊变量:广播变量和累加变量
    +广播变量为只读变量,创建广播变量如下
val broadcastAList = sc.broadcast(List("a", "b", "c", "d", "e"))
  • 广播变量可以被非驱动程序的节点访问
sc.parallelize(List("1", "2", "3")).map(x =>broadcastAList.value ++ x).collect

Spark Scala 编程入门

  • 对于Scala程序而言,需要创建两个文件:Scala代码文件以及项目的构建配置文件。
  • 项目将使用SBT(Scala Build Tool)来构建。
  • 实例
  • SBT配置文件如下。各行代码之间的空行是必须的!
name := "scala-spark-app"
\空行
version := "1.0"
\空行
scalaVersion := "2.10.4"
\空行
libraryDependencies += "org.apache.spark" %% "spark-core" % "1.2.0"
  • 导入所需要的Spark类
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
  • 初始化所需要的SparkContext对象,并通过textFile函数来访问CSV数据文件
def main(args: Array[String]){
    val sc = new SparkContext("local[2]", "First Spark App")
    val data = sc.textFile("data/UserPerchaseHistory.csv")
        .map(line => line.split(",")
        .map(purchaseRecord => (perchaseRecord(0), purchaseRecord(1),perchaseRecord(2)))
  • RDD中每条记录都是由(user, product, price)构成,对商店计算如下指标:购买总次数,客户总个数,总收入。
val numPurchases = data.count()
val uniqueUsers = data.map{ case(user, product, price) => user}.distinct().count()
val totalRevenue = data.map{ case(user, product, price) => price.toDouble}.sum()
val productsByPopularity = data
    .map{case(user, product, price) => (product, 1)}
    .reduceByKey(_ + _)
    .collect()
    .sortBy(-_._2)
val mostPopular = productsByPopularity(0)
  • 结果打印
        println(Total purchases:"+ numPurchases)
        ...
    }
}

Spark Python 编程入门

from pyspark import SparkContext

sc = SparkContext("local[2]", "First Spark App")
# spark读取本地文件
t = sc.textFile("file:///home/users/douzhi/t.txt")
#spark读取hdfs文件
t = sc.textFile("hdfs:///path/...")
print t.first()
posted @ 2016-08-03 18:50  英吹斯汀ING  阅读(435)  评论(0编辑  收藏  举报