Hive基础介绍
HIVE结构
- Hive 是建立在 Hadoop 上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在 Hadoop 中的大规模数据的机制。Hive 定义了简单的类 SQL 查询语言,称为 QL,它允许熟悉 SQL 的用户查询数据。同时,这个语言也允许熟悉 MapReduce 开发者的开发自定义的 mapper 和 reducer 来处理内建的 mapper 和 reducer 无法完成的复杂的分析工作。
1.1 HIVE架构
- Hive 的结构可以分为以下几部分:
- 用户接口:包括 CLI, Client, WUI
- 元数据存储。通常是存储在关系数据库如 mysql, derby 中
- 解释器、编译器、优化器、执行器
- Hadoop:用 HDFS 进行存储,利用MapReduce 进行计算
- 用户接口主要有三个:CLI,Client和 WUI。其中最常用的是 CLI,Cli 启动的时候,会同时启动一个 Hive 副本。Client 是 Hive 的客户端,用户连接至 Hive Server。在启动 Client 模式的时候,需要指出 Hive Server 所在节点,并且在该节点启动 Hive Server。 WUI 是通过浏览器访问 Hive。
- Hive 将元数据存储在数据库中,如 mysql、derby。Hive 中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。
- 解释器、编译器、优化器完成 HQL 查询语句从词法分析、语法分析、编译、优化以及查询计划的生成。生成的查询计划存储在 HDFS 中,并在随后有 MapReduce 调用执行。
- Hive 的数据存储在 HDFS 中,大部分的查询由 MapReduce 完成(包含 * 的查询,比如 select * from tbl 不会生成 MapRedcue 任务)。
1.2 Hive 和 hadoop关系
Hive构建在 Hadoop 之上,
· HQL 中对查询语句的解释、优化、生成查询计划是由 Hive 完成的
· 所有的数据都是存储在 Hadoop 中
· 查询计划被转化为 MapReduce 任务,在 Hadoop 中执行(有些查询没有 MR 任务,如:select * from table)
· Hadoop和Hive都是用UTF-8编码的