米联客FEP-DAQ001-16-200K-8 AD模块硬件使用手册
1 产品概述
FEP-DAQ001-16-200K-8集成了一颗AD7606-8 高精度ADC芯片,AD760-8 是16 位8 通道同步采样模数数据采集系统(DAS)。AD7606 内置模拟输入箝位保护、二阶抗混叠滤波器、跟踪保持放大器、16 位电荷再分配逐次逼近型ADC、灵活的数字滤波器、2.5V 基准电压源、基准电压缓冲以及高速串行和并行接口。AD7606 采用5V单电源供电,可以处理±10V 和±5V 真双极性输入信号,同时所有通道均能以高达200 kSPS 的吞吐速率采样。输入箝位保护电路可以耐受最高达±16.5V 的电压。无论以何种采样频率工作,AD7606 的模拟输入阻抗均为1 MΩ。它采用单电源工作方式,具有片内滤波和高输入阻抗,因此无需驱动运算放大器和外部双极性电源。AD7606 抗混叠滤波器的3 dB 截止频率为22 kHz;当采样速率为200 ksps 时,它具有40 dB 抗混叠抑制特性。灵活的数字滤波器采用引脚驱动,可以改善信噪比(SNR),并降低3 dB 带宽。
FEP-DAQ001-16-200K-8采用SPI通信,实现了同时8通道ADC同时采集。信号通过SMA接口引出,默认焊接4路SMA接口。
2硬件参数概述
FEP-DAQ001-16-200K-8 | |
ADC芯片 | AD7606 |
采样精度 | 16bit |
-3db带宽 | -5V~+5V 15KHZ -10V~+10V 23KHZ |
IO电平 | 1.8V或者3.3V可选(ad7606只支持3.3V通过电平芯片转换) |
采样频率 | 200KSPS |
模拟通道 | 8个 |
触发IO | 0个 |
输入电平 | -5V~+5V 或-10V~+10V |
数据格式 | 二进制补码(~32768 ~ +32767) |
信噪比1KHZ(SNR) | -5V~+5V 89db -10V~+10V 90db |
无杂散动态范围170M(SFDR) | -108db |
功耗165M | Ad7606 100mW |
占用IO数量 | 10个GPIO |
3功能概述
3.1 ADC功能框图
AD7606芯片的关键结构图:
1)、8路16bit ADC实际通过多路复用的方式实现的,内部真正只有1个16bitADC
2)、支持并口传输和SPI串行传输
3)、具有内部的2.5V基准,通常采用内部电压基准,可以省去一个外部基准。
4)、还有一些比如BUSY、FRSTDATA、信号需要下面继续根据datasheet了解。
3.2 ADC转换控制时序
CONVST时序-转换之后读取
CONVST时序-转换过程种读取
AD7606支持2种时序转换,由于我们采用的时串行SPI模式,本身SPI读取数据就会耽误很多时间,所以必须采用第二种工作时序,才能确保200Kbps的采样率。
通过这个转换时序,我们需要把上图的时序种的所有信号作用搞清楚。
1、RESET信号用于对AD7606芯片的复位,复位的高电平时间参数tRESET=50ns,复位和转换信号CONVSTA/ONVSTB的上升沿时间参数t7=25ns
2、CONVSTA/ CONVSTB的低电平时间参数t2=40ns
3、CONVSTA/ CONVSTB如果不是同步,那么他们之间的时间差不能超过t5=0.5ms,我们这里时同时的
4、转换周期tCYCLE=5us
5、BUSY信号为高电平代表数据正在转换,转换时间参数tCONV为最大4.15us
6、CS信号和BUSY信号有一个时间参数t6不能大于25ns
由于设计FPGA接口芯片程序,都是和时序相关联的,所以了解了以上时序参数后,我们FPGA代码设计就要能够满足这些参数指标。
3.3 ADC SPI时序
当数据完成转换后,CS为电平期间,每个时钟的上升沿完成数据的采样,这里有一个FRSTDATA的表中,代表每次转换的第一个数据,这里实际可以不用这个信号,因为每次CS之后的第一个上升沿时钟我们就是开始采样数据,没16次完成一路ADC的采集。
对于AD7606具有8路ADC,DOUTA对于1~4路ADC通道,DOUTB对应5~8路ADC通道。而且ADC的2组4个通道可以一次性完成采集,也就是说16X4共计64个时钟上升沿完成4路ADC采集,DOUTA和DOUTB各4路。
3.4 芯片接口定义
4 数据模式设置
4数据模式设置
设置SEN 脚的工作电平,来设置ADS4225/ADS4229的工作模式
PAR/SER 脚电平 | 模式 | RANG | 输入范围 |
0 | 并口 | 0 | -5V~+5V |
1 | SPI串行 | 1 | -10V~+10V |
5 原理图
5.1 3.3V版本
支持IO电压使能上电,对电路进行保护
FEP扩展接口定义
5.1 1.8V版本
具有上电使能功能,对硬件保护
电平转换芯片完成3.3V到1.8V IO电平转换
6系统框图
本方案种,把前面测试程序中的数据改为从ADC采集的数据
7 波形绘制
关于HDMI输出IP的部分这里不再介绍,VTC时序设计部分这里也不详细介绍。如果读者这些基础知识不清楚的,可以参考米联客入门级教学课程的教学资料。
7.1 AD7606采集驱动
AD7606支持并行采集和串行采集两种方式,我们这里使用串行模式,相比并行模式具有省IO的优势。
/*******************************AD7606 SPI串行采样********************* --以下是米联客设计的AD7606 SPI串行采样驱动程序 --1.代码简洁,占用极少逻辑资源,代码结构清晰,逻辑设计严谨 --2.AD7606可以工作于并行模式,和串行模式,串行模式可以使用更少的IO --3.AD7606最高可以工作于200K 8通道同时采样,默认就是工作于200K 采样,SPI_DIV 和T5US_DIV根据不同的系统时钟需要正确设置 *********************************************************************/
`timescale 1ns / 1ns//仿真时间刻度/精度
module uispi7606#( parameter [9:0] SPI_DIV = 10'd5, //SPI时钟分频参数,需要产生20MHZ时钟 parameter [9:0] T5US_DIV = 10'd499 //AD7606采样周期设置,5us分频参数 ) ( input I_ad_clk, //系统时钟输入 input I_ad_rst, //系统复位输入 input I_ad_busy, //ad7606 忙标志位 output [2:0] O_ad_os, //ad7606 过采样倍率选择,本驱动不使用 output O_ad_cs, //ad7606 CS信号输出,低电平SPI数据线输出AD7606寄存器数据 output reg O_ad_sclk, //ad7606 SCLK时钟输出 output O_ad_rst, //ad7606 复位输出 output O_ad_convsta, //ad7606 A组通道转换 output O_ad_convstb, //ad7606 B组通道转换 output O_ad_range, //ad7606 模拟输入范围,设置1范围:±10V,设置0范围±5V input I_ad_out_a, //串行A组通道采集输入,V1,V2,V3,V4 input I_ad_out_b, //串行B组通道采集输入, V5,V6,V7,V8 output reg [63:0] ad_out_a, //A组通道采集有效数据输出 output reg [63:0] ad_out_b, //B组通道采集有效数据输出 output ad_cap_en //采集完成使能 );
assign O_ad_range = 1'b1; //±10V真直流输入范围 assign O_ad_os = 3'b000; //无过采样
//ad复位时间高电平,复位时间最少50ns reg [23: 0] rst_cnt; assign O_ad_rst = !rst_cnt[23]; always@(posedge I_ad_clk)begin if(I_ad_rst) rst_cnt <= 24'd0; else if(!rst_cnt[23]) rst_cnt <= rst_cnt + 1'b1; end
//设置采样频率,AD7606为8通道可以工作于200Kbps采样率,因此采样周期为5us reg [9:0] tcnt5us; wire cycle_end = (tcnt5us == T5US_DIV); always@ (posedge I_ad_clk)begin if(O_ad_rst) tcnt5us <= 10'd0; else if(tcnt5us < T5US_DIV) tcnt5us <= tcnt5us + 1'b1; else tcnt5us <= 10'd0; end
parameter [9:0] SPI_DIV1 = SPI_DIV/2; //半周期分频 reg [9:0] clk_div = 10'd0;//分频计数器
//SPI 时钟分频,对于200K采样,设置20M时钟 always@(posedge I_ad_clk)begin if(clk_div < SPI_DIV) clk_div <= clk_div + 1'b1; else clk_div <= 10'd0; end
//产生SPI时钟 wire clk_en1 = (clk_div == SPI_DIV1);// 半周期使能,控制输出0 wire clk_en2 = (clk_div == SPI_DIV);// 半周期使能,控制输出1
always@(posedge I_ad_clk)begin if(clk_en2) O_ad_sclk <= 1'b1; //输出高电平 else if(clk_en1) O_ad_sclk <= 1'b0; //输出高低平 end
//AD转换状态机 reg [1:0] AD_S; reg ad_convst; //ADC转换控制信号,A组通道和B组通道采用同一通道 //ADC工作于SPI模式,以及边读边转换模式,本次数据转换的同时,可以读出前一次转换的结果 assign O_ad_cs = ~((AD_S == 2'd3)&&I_ad_busy);//当AD7606工作在串行模式,cs=0代表输出通过SPI数据总线,输出之前的采样数据 assign O_ad_convsta = ad_convst; //ADC转换控制信号,A组通道和B组通道采用同一通道 assign O_ad_convstb = ad_convst; //ADC转换控制信号,A组通道和B组通道采用同一通道
always @(posedge I_ad_clk) begin if(O_ad_rst||I_ad_rst)begin ad_convst <= 1'b1; AD_S <= 2'd0; end else begin case(AD_S) 2'd0:if(clk_en2)begin //clk_en2,控制SCLK输出1,因此这里相当于SCLK上升沿 ad_convst <= 1'b0; //设置ad_convst=0 AD_S <= 2'd1;//下一状态 end 2'd1:if(clk_en2)begin //延迟50ns,ad_convst低电平至少25ns,对于SCLK时钟是20MHZ,所以这里ad_convst低电平是50ns ad_convst <= 1'b1;//ad_convst 低电平50ns后拉高为高电平 AD_S <= 2'd2;//下一状态 end 2'd2:if(clk_en2&&I_ad_busy)//延迟50ns,并且等待busy高,只要ADC正常工作,busy必然为高,说明ADC处于采样转换下 AD_S <= 2'd3; 2'd3:if(cycle_end)//ADC转换时间最大4.2us,5us周期结束,代表本次8通道完全采集结束 AD_S <= 2'd0; //回到初始状态,进行下一次采样 endcase end end
//SPI采样 reg [7 : 0] nbits; // bits计数器,用于计数完成了从AD7606 SPI总线读出的bits数 wire ad_cap_en_r1 = (nbits==8'd64); //数据同步输出使能 reg ad_cap_en_r2 = 1'b0; //数据同步输出使能寄存一次 assign ad_cap_en = ({ad_cap_en_r1,ad_cap_en_r2}==2'b10);//高电平输出系统时钟的一个周期
always@(posedge I_ad_clk) begin //寄存一次ad_cap_en_r1 ad_cap_en_r2 <= ad_cap_en_r1; end
//当CS信号为低电平,每个SCL的下降沿输出采样数据,每组通道采样64bits wire cap_en = (!O_ad_cs)&&clk_en1&&(nbits<8'd64);
//ADC 串并转换模块 always@(posedge I_ad_clk) begin if(O_ad_rst) begin //ADC复位期间重置相关寄存器 ad_out_a <= 64'd0; ad_out_b <= 64'd0; nbits <= 8'd0; end else if(O_ad_cs)begin //高电平,重置 nbits nbits <= 8'd0; end else if(cap_en)begin//当CS信号为低电平,每个SCL的下降沿采样数据,每组通道采样64bits nbits <= nbits + 1'b1; // ad_out_a <= {ad_out_a[62:0],I_ad_out_a};//保存A组通道数据,V1~V4,每个通道16bits ad_out_b <= {ad_out_b[62:0],I_ad_out_b};//保存B组通道数据,V5~V8,每个通道16bits end end
endmodule
|
7.2 顶层模块调用程序
/**********************AD7606 ADC采集波形显示************************* *********************************************************************/
`timescale 1ns / 1ns//仿真时间刻度/精度
module ad7606_top ( input I_sysclk_p, //系统时钟输入 input I_ad_busy, //ad7606 忙标志位 output O_ad_cs, //ad7606 CS信号输出,低电平SPI数据线输出AD7606寄存器数据 output O_ad_sclk, //ad7606 SCLK时钟输出 output O_ad_rst, //ad7606 复位输出 output O_ad_convsta, //ad7606 A组通道转换 output O_ad_convstb, //ad7606 B组通道转换 output O_ad_range, //ad7606 模拟输入范围,设置1范围:±10V,设置0范围±5V input I_ad_out_a, //串行A组通道采集输入,V1,V2,V3,V4 input I_ad_out_b, //串行B组通道采集输入, V5,V6,V7,V8 output O_card_power_en, //子卡电源使能
output HDMI_CLK_P, //HDMI时钟输出 P端 output HDMI_CLK_N, //HDMI时钟输出 N端 output [2:0] HDMI_TX_P, //HDMI数据输出 P端 output [2:0] HDMI_TX_N //HDMI数据输出 N端 );
assign O_card_power_en = 1'b1; //子卡上电
wire pclkx1,pclkx5,clk100M,locked; //MMCM/PLL时钟信号
//例化MMCM/PLL IP clk_wiz_1 clk_hdmi_pll_inst ( .clk_in1(I_sysclk_p), .reset(!rst_cnt[7]), .locked(locked), .clk_out1(pclkx1),//像素时钟 .clk_out2(pclkx5),//HDMI输出5倍像素时钟 .clk_out3(clk100M)//100M时钟,给ADC采集用 );
wire vtc_rstn,vtc_clk,vtc_vs,vtc_hs,vtc_de,vtc2_de; wire [23:0] rgb; //RGB颜色寄存器 assign vtc_clk = pclkx1;//像素时钟 assign vtc_rstn = locked;//VTC复位信号
//ad7606 ip相关信号 wire I_ad_clk,I_ad_rst,ad_cap_en; wire [63:0] ad_out_a,ad_out_b; assign I_ad_clk = clk100M; //ADC时钟 assign I_ad_rst = !locked; //ADC IP内部代码复位
uispi7606#( .SPI_DIV(10'd5),//SPI时钟分频参数,需要产生20MHZ时钟 .T5US_DIV(10'd999)//AD7606采样周期设置,5us分频参数 ) uispi7606_inst ( .I_ad_clk(I_ad_clk), //系统时钟输入 .I_ad_rst(I_ad_rst), //系统复位输入 .I_ad_busy(I_ad_busy), //ad7606 忙标志位 .O_ad_cs(O_ad_cs), //ad7606 CS信号输出,低电平SPI数据线输出AD7606寄存器数据 .O_ad_sclk(O_ad_sclk), //ad7606 SCLK时钟输出 .O_ad_rst(O_ad_rst), //ad7606 复位输出 .O_ad_convsta(O_ad_convsta), //ad7606 A组通道转换 .O_ad_convstb(O_ad_convstb), //ad7606 B组通道转换 .O_ad_range(O_ad_range), //ad7606 模拟输入范围,设置1范围:±10V,设置0范围±5V .I_ad_out_a(I_ad_out_a), //串行A组通道采集输入,V1,V2,V3,V4 .I_ad_out_b(I_ad_out_b), //串行B组通道采集输入, V5,V6,V7,V8 .ad_out_a(ad_out_a), //A组通道采集有效数据输出 .ad_out_b(ad_out_b), //B组通道采集有效数据输出 .ad_cap_en(ad_cap_en) //采集完成使能 );
wire [15:0] ad_ch1 = ad_out_a[63:48];//ADC 通道1 wire [15:0] ad_ch2 = ad_out_a[47:32];//ADC 通道2 wire [15:0] ad_ch3 = ad_out_a[31:16];//ADC 通道3 wire [15:0] ad_ch4 = ad_out_a[15: 0];//ADC 通道4 wire [15:0] ad_ch5 = ad_out_b[63:48];//ADC 通道5 wire [15:0] ad_ch6 = ad_out_b[47:32];//ADC 通道6 wire [15:0] ad_ch7 = ad_out_b[31:16];//ADC 通道7 wire [15:0] ad_ch8 = ad_out_b[15: 0];//ADC 通道8
//例化 ILA IP 用于在线逻辑分仪观察ADC采样值 ila_0 ila_debug ( .clk(I_ad_clk), //系统时钟 .probe0(ad_cap_en), //AD采集数据使能,ILA中使用capture功能,可以观察到更多有效数据 .probe1(ad_ch1),//ADC 通道1 .probe2(ad_ch2),//ADC 通道2 .probe3(ad_ch3),//ADC 通道3 .probe4(ad_ch4),//ADC 通道4 .probe5(ad_ch5),//ADC 通道5 .probe6(ad_ch6),//ADC 通道6 .probe7(ad_ch7),//ADC 通道7 .probe8(ad_ch8) //ADC 通道8 );
//上电延迟复位 reg [7:0] rst_cnt=0; //复位计数器 wire rstn = rst_cnt[7];//用高位复位
always @(posedge I_sysclk_p)begin if (rst_cnt[7]) rst_cnt <= rst_cnt; else rst_cnt <= rst_cnt+1'b1; end
//例化HDMI 输出IP uihdmitx # ( .FAMILY("7FAMILY") //选择芯片所支持的系列"7FAMILY" "UFAMILY" ) uihdmitx_inst ( .I_RSTn(locked),//复位 .I_HS(vtc_hs),//hs信号 .I_VS(vtc_vs),//vs信号 .I_VDE(vtc_de),//de信号 .I_RGB({rgb}),//RGB数据 .I_PCLKX1(pclkx1),//像素时钟 .I_PCLKX2_5(1'b0),//2.5倍像素时钟,只有UFAMILY需要 .I_PCLKX5(pclkx5),//5倍像素时钟 .TMDS_TX_CLK_P(HDMI_CLK_P),//HDMI时钟输出P端 .TMDS_TX_CLK_N(HDMI_CLK_N),//HDMI时钟输出N端 .TMDS_TX_P(HDMI_TX_P),//HDMI输出数据P端 .TMDS_TX_N(HDMI_TX_N)//HDMI输出数据N端 );
//此VTC IP 用于产生绘制波形的有效区域,波形绘制区域大小未1024*600 uivtc# ( .H_ActiveSize(1280), //视频时间参数,行视频信号,一行有效(需要显示的部分)像素所占的时钟数,一个时钟对应一个有效像素 .H_FrameSize(1280+88+44+239), //视频时间参数,行视频信号,一行视频信号总计占用的时钟数 .H_SyncStart(1280+88), //视频时间参数,行同步开始,即多少时钟数后开始产生行同步信号 .H_SyncEnd(1280+88+44), //视频时间参数,行同步结束,即多少时钟数后停止产生行同步信号,之后就是行有效数据部分 .V_ActiveSize(720), //视频时间参数,场视频信号,一帧图像所占用的有效(需要显示的部分)行数量,通常说的视频分辨率即H_ActiveSize*V_ActiveSize .V_FrameSize(720+4+5+28), //视频时间参数,场视频信号,一帧视频信号总计占用的行数量 .V_SyncStart(720+4), //视频时间参数,场同步开始,即多少行数后开始产生场同步信号 .V_SyncEnd (720+4+5), //视频时间参数,场同步结束,即多少场数后停止产生场同步信号,之后就是场有效数据部分 .H2_ActiveSize(1024), //波形绘制区域行像素大小 .V2_ActiveSize(256) //波形绘制区域场像素大小 ) uivtc_inst ( .I_vtc_clk(vtc_clk), //系统时钟 .I_vtc_rstn(vtc_rstn), //系统复位 .vtc2_offset_x(128), //X坐标相对屏幕的原始坐标的偏移 .vtc2_offset_y(200), //Y坐标相对屏幕的原始坐标的偏移 .O_vtc_vs(vtc_vs),//场同步输出 .O_vtc_hs(vtc_hs),//行同步输出 .O_vtc_de(vtc_de),//视频数据有效 .O_vtc2_de(vtc2_de)//绘制波形显示区域的有效区域 );
//测试数据产生,通过test_data产生测试数据,可以用于测试波形显示器的基本功能测试 //reg [7:0]test_data =0; //always @(posedge vtc_clk) // if(O_vtc2_de) // test_data[7:0] = test_data + 1'b1;
//例化波形显示器 IP,默认支持2个通道数据,可以扩展支持更多通道 uiwave uiwave_inst ( //波形1 .I_wave1_clk(I_ad_clk),//系统时钟输入 .I_wave1_data(ad_ch1[15:8]+8'h80),//ADC只显示高8bits 数据,其中8'h80是对有符号的ADC的计算偏移,把负数坐标转为对应的整数坐标 .I_wave1_data_de(ad_cap_en),//ADC数据有效信号
//波形2 .I_wave2_clk(I_ad_clk),//系统时钟输入 .I_wave2_data(ad_ch2[15:8]+8'h80),//ADC只显示高8bits 数据,其中8'h80是对有符号的ADC的计算偏移,把负数坐标转为对应的整数坐标 .I_wave2_data_de(ad_cap_en),//ADC数据有效信号
.I_vtc_rstn(vtc_rstn),//时序发生复位 .I_vtc_clk (vtc_clk), //像素时钟 .I_vtc_vs (vtc_vs), //场同步输出 .I_vtc_de (vtc2_de),//同步,绘制波形显示区域的有效区域 .O_vtc_rgb (rgb)//同步RGB数据 绘制数据输出
);
endmodule |
7.3 设置画中画区域
7.3.1 显示区域时序
显示器上的图像,是从液晶屏的左上角,一个像素点一个像素点绘制,当一行所有绘制完成,进行下一行的绘制。利用肉眼的视觉暂留原理,一般1秒显示25帧以上,我们就能看到视频是动态的。
本方案中,我们绘制的波形曲线只需要显示波形的数据点,比如对于1920*1080的显示区域,我们只要绘制1920点波形点,即可。
为了方便我们理解,我们定义HS方向是X坐标,VS方向是Y坐标。
比如我们这里设计的是显示1024个波形数据点,在绘制每一行图像的时候,比对每一个数据和VS的Y坐标是否相等,如果相等就绘制这个波形点。这样我们就能完成1024个波形点在整个屏幕的显示。
7.3.2 画中画的vtc视频时序模块设计
我们这里显示的波形数据点是1024,高度是256,因此我们需要实现一个画中画的功能。栅格绘制,以及波形数据点会以画中画的有效区域进行显示。
支持画中画的uivtc.v源码
/*************uivtc(video timing controller)视频时序控制器************* --版本号1.1 --以下是米联客设计的uivtc(video timing controller)视频时序控制器 --1.代码简洁,占用极少逻辑资源,代码结构清晰,逻辑设计严谨 --2.使用方便,只需要输入6个参数既可以实现对不同视频分辨率时序的控制 --3.该视频时序控制,一个时钟对应一个像素 --4.通常我们说的像素,比如1080P代表了1920*1080是指视频的有效显示区域,实际的视频还包含不能显示的区域,比如行同步,场同步时间 --5.通常我们说的行视频信号,也称之为视频的水平像素信号;场视频信号,也称之为视频的垂直像素信号; --6.针对波形绘制,增加画中画绘制区域功能 *********************************************************************/
`timescale 1ns / 1ns //仿真时间刻度/精度
module uivtc# ( parameter H_ActiveSize = 1980, //视频时间参数,行视频信号,一行有效(需要显示的部分)像素所占的时钟数,一个时钟对应一个有效像素 parameter H_FrameSize = 1920+88+44+148, //视频时间参数,行视频信号,一行视频信号总计占用的时钟数 parameter H_SyncStart = 1920+88, //视频时间参数,行同步开始,即多少时钟数后开始产生行同步信号 parameter H_SyncEnd = 1920+88+44, //视频时间参数,行同步结束,即多少时钟数后停止产生行同步信号,之后就是行有效数据部分
parameter V_ActiveSize = 1080, //视频时间参数,场视频信号,一帧图像所占用的有效(需要显示的部分)行数量,通常说的视频分辨率即H_ActiveSize*V_ActiveSize parameter V_FrameSize = 1080+4+5+36, //视频时间参数,场视频信号,一帧视频信号总计占用的行数量 parameter V_SyncStart = 1080+4, //视频时间参数,场同步开始,即多少行数后开始产生场同步信号 parameter V_SyncEnd = 1080+4+5, //视频时间参数,场同步结束,即多少场数后停止产生场同步信号,之后就是场有效数据部分
parameter H2_ActiveSize = 640, parameter V2_ActiveSize = 480 ) ( input I_vtc_rstn,//系统复位 input I_vtc_clk, //系统时钟 output reg O_vtc_vs, //场同步输出 output reg O_vtc_hs, //行同步输出 output reg O_vtc_de, //视频数据有效 input [11:0] I_vtc2_offset_x,//相对屏幕原点(左上角)X方向偏移 input [11:0] I_vtc2_offset_y,//相对屏幕原点(左上角)Y方向偏移 output reg O_vtc2_de //绘制有效的显示区域 );
reg [11:0] hcnt = 12'd0; //行像素计数器,寄存器 reg [11:0] vcnt = 12'd0; //场像素计数器,寄存器 reg [2 :0] rst_cnt = 3'd0; //复位计数器,寄存器 wire rst_sync = rst_cnt[2]; //同步复位
always @(posedge I_vtc_clk or negedge I_vtc_rstn)begin //通过计数器产生同步复位 if(I_vtc_rstn == 1'b0) rst_cnt <= 3'd0; else if(rst_cnt[2] == 1'b0) rst_cnt <= rst_cnt + 1'b1; end
//行像素计数器 always @(posedge I_vtc_clk)begin if(rst_sync == 1'b0) //复位 hcnt <= 12'd0; else if(hcnt != (H_FrameSize - 1'b1))//计数范围从0 ~ H_FrameSize-1 hcnt <= hcnt + 1'b1; else hcnt <= 12'd0; end
//场计数器,用于计数已经完成的行视频信号 always @(posedge I_vtc_clk)begin if(rst_sync == 1'b0) vcnt <= 12'd0; else if(hcnt == (H_ActiveSize - 1'b1)) begin//是否一行像素结束 vcnt <= (vcnt == (V_FrameSize - 1'b1)) ? 12'd0 : vcnt + 1'b1;//每一行计数,场计数器加1,计数范围0~V_FrameSize - 1 end end
wire hs_valid = hcnt < H_ActiveSize; //行信号有效像素部分 wire vs_valid = vcnt < V_ActiveSize; //场信号有效像素部分 wire vtc_hs = (hcnt >= H_SyncStart && hcnt < H_SyncEnd);//产生hs,行同步信号 wire vtc_vs = (vcnt > V_SyncStart && vcnt <= V_SyncEnd);//产生vs,场同步信号 wire vtc_de = hs_valid && vs_valid;//只有当行像素有效和场像素同时有效,视频数据部分才是有效
//画中画,波形绘制区域 wire hs2_valid = (hcnt>=I_vtc2_offset_x)&& (hcnt<(I_vtc2_offset_x+H2_ActiveSize)); //画中画,波形绘制区域HS有效信号 wire vs2_valid = (vcnt>=I_vtc2_offset_y)&& (vcnt<(I_vtc2_offset_y+V2_ActiveSize)); //画中画,波形绘制区域VS有效信号 wire vtc2_de = hs2_valid && vs2_valid; //画中画,数据有效绘制信号
//完一次寄存打拍输出,有利于改善时序,尤其对于高分辨率,高速的信号,打拍可以改善内部时序,以运行于更高速度 always @(posedge I_vtc_clk)begin if(rst_sync == 1'b0)begin O_vtc_vs <= 1'b0; O_vtc_hs <= 1'b0; O_vtc_de <= 1'b0; O_vtc2_de <= 1'b0; end else begin O_vtc_vs <= vtc_vs; //场同步信号打拍输出 O_vtc_hs <= vtc_hs; //行同步信号打拍输出 O_vtc_de <= vtc_de; //视频有效信号打拍输出 O_vtc2_de <= vtc2_de; //画中画,数据有效绘制信号 end end
endmodule |
7.3.3 栅格绘制波形绘制
uiwave.v
`timescale 1ns / 1ns module uiwave (
//波形1 input I_wave1_clk, //波形1时钟 input [7 :0] I_wave1_data, //波形1数据 input I_wave1_data_de, //波形1数据有效
//波形2 input I_wave2_clk, //波形2时钟 input [7 :0] I_wave2_data, //波形2数据 input I_wave2_data_de, //波形2数据有效
//VTC时序输入 input I_vtc_rstn, //时序复位输入 input I_vtc_clk, //时序时钟输入 input I_vtc_vs, //VS-帧同步,信号同步输入 input I_vtc_de, //de有效区域,信号同步输入
//同步时序输出,以及像素输出 output O_vtc_vs, //帧同步输出 output O_vtc_de, //de信号同步后输出 output reg [23:0] O_vtc_rgb //同步输出显示颜色 );
reg [1 :0] vtc_vs_r; //vs寄存器 reg [1 :0] vtc_de_r; //de寄存器 reg [11 :0] vcnt,hcnt;//vcnt计数有多少行,hcnt计数有多少列
reg grid_de; //栅格绘制使能
assign O_vtc_vs = vtc_vs_r[0]; //同步后输出O_vtc_vs assign O_vtc_de = vtc_de_r[0]; //同步后输出O_vtc_de
//寄存,同步 always @(posedge I_vtc_clk)begin vtc_vs_r <= {vtc_vs_r[0],I_vtc_vs}; vtc_de_r <= {vtc_de_r[0],I_vtc_de}; end
//以下hcnt用于计数列,vcnt用于计数行数
//hcnt像素计数器 always @(posedge I_vtc_clk)begin if(hcnt == 1023) hcnt <= 12'd0; else if(vtc_de_r[0] && (hcnt != 1023)) //hcnt计数列,共计1024个像素 hcnt <= hcnt + 1'b1; end
//vcnt计数有多少行 always @(posedge I_vtc_clk)begin if(vtc_vs_r == 2'b01) vcnt <= 8'd0; else if((vtc_de_r == 2'b10) && (vcnt != 255)) //以de信号用于计数行,共计256行 vcnt <= vcnt + 1'b1; end
//栅格绘制 always @(posedge I_vtc_clk)begin if((hcnt[2:0]==7&&(vcnt[5:0]==63||vcnt == 0))||((hcnt[5:0]==63||hcnt==0)&&vcnt[2:0]==7)||(vcnt == 0 && hcnt==0)) grid_de <= O_vtc_de; else grid_de <= 1'b0; end
//1--绘制波形曲线1,绿色点 //2--绘制波形曲线2,黄色点 //3--绘制栅格虚线,白色点 //4--绘制背景色,黑色 always @(posedge I_vtc_clk)begin casex({grid_de,wave2_pixel_en,wave1_pixel_en}) 3'bxx1: O_vtc_rgb <= {8'h00,8'hff,8'h00}; //wave1信号显示像素颜色 3'bx10: O_vtc_rgb <= {8'hff,8'hff,8'h00}; //wave2信号显示像素颜色 3'b100: O_vtc_rgb <= {8'h96,8'h96,8'h96}; //网格显示像素为白色点 default: O_vtc_rgb <= {8'h00,8'h00,8'h00}; //黑色背景 endcase end
//波形缓存1,以及波形绘制像素点输出使能 uiwave_buf uiwave1_buf_inst ( .I_wave_clk (I_wave1_clk), //写数据输入时钟,和ADC采集时钟同步 .I_wave_data (I_wave1_data), //写数据 .I_wave_data_de(I_wave1_data_de), //写数据有效
.I_vtc_clk (I_vtc_clk), //VTC时序发生器时钟输入 .I_vtc_rstn (I_vtc_rstn), //VTC时序发生器复位 .I_vtc_de_r (vtc_de_r[0]), //VTC时序发生器的de有效区域输入 .I_vtc_vs (I_vtc_vs), //VTC时序发生器的VS同步信号输入 .I_vtc_vcnt (vcnt), //vtc的数据偏移,主要对有符号数据进行调整 .O_pixel_en (wave1_pixel_en) //输出输出使能 );
//波形缓存2,以及波形绘制像素点输出使能 uiwave_buf uiwave2_buf_inst ( .I_wave_clk (I_wave2_clk), //写数据输入时钟,和ADC采集时钟同步 .I_wave_data (I_wave2_data), //写数据 .I_wave_data_de (I_wave2_data_de), //写数据有效
.I_vtc_clk (I_vtc_clk), //VTC时序发生器时钟输入 .I_vtc_rstn (I_vtc_rstn), //VTC时序发生器复位 .I_vtc_de_r (vtc_de_r[0]), //VTC时序发生器的de有效区域输入 .I_vtc_vs (I_vtc_vs), //VTC时序发生器的VS同步信号输入 .I_vtc_vcnt (vcnt), //vtc的数据偏移,主要对有符号数据进行调整 .O_pixel_en (wave2_pixel_en) //输出输出使能 );
endmodule |
7.3.4 波形点缓存
uiwave_buf.v通过BRAM缓存ADC数据
/*************uiwave_buf简易波形绘制驱动****************************** --版本号1.0 --1.代码简洁,占用极少逻辑资源,代码结构清晰,逻辑设计严谨 --2.使用方便,只需要输入ADC的值,就能完成波形绘制 --3.占用资源少,波形输入8bits ADC值,存储到BLOCK RAM 只需要1048*8bit 大小的BRAM,即可完成1通道的波形存储 --4.乒乓绘制,当绘制一个波形的时候,另外个波形存储到另外一段地址空间 --5.绘制过程中,每一行数据都读出和Y坐标匹配,如果匹配成功,使能O_pixel_en绘制这个数据点 *********************************************************************/
`timescale 1ns / 1ns //仿真时间刻度/精度
module uiwave_buf ( input I_wave_clk, //写数据输入时钟,和ADC采集时钟同步 input [7 :0] I_wave_data, //写数据 input I_wave_data_de,//写数据有效
input I_vtc_clk, //VTC时序发生器时钟输入 input I_vtc_rstn, //VTC时序发生器复位 input I_vtc_vs, //VTC时序发生器的VS同步信号输入 input I_vtc_de_r, //VTC时序发生器的de有效区域输入 input [7 :0] I_vtc_vcnt, //vtc的数据偏移,主要对有符号数据进行调整 output O_pixel_en //输出输出使能 );
//BRAM 简单双口BRAM reg [9 :0] addra = 0; //BRAM 通道A地址 //reg ena = 0; //BRAM 通道A使能 reg wea = 0; //BRAM 通道A写使能 reg [9 :0] addrb = 0; //BRAM 通道B地址 reg enb = 0; //BRAM 通道B读使能 reg [0 :0] WR_S,RD_S; //写状态机,读状态机 reg buf_flag;//buf_flag用于乒乓地址缓存切换 reg addr0_en;//用于设置写第一个数据相对地址0
wire [7 :0] wave_data;//写波形数据到BRAM reg [3 :0] async_vtc_vs =0; //同步信号
always @(posedge I_wave_clk)begin //对异步I_vtc_vs采样 async_vtc_vs <= {async_vtc_vs[2:0],I_vtc_vs}; end
//绘制波形数据点使能,绘制原理: //当匹配到存储的ADC数据和正在扫描的Y坐标值一致就输出,每个X坐标方向绘制1个波形点 assign O_pixel_en = I_vtc_de_r&(I_vtc_vcnt[7:0] == wave_data[7:0]);
//写BRAM 状态机 always @(posedge I_wave_clk or negedge I_vtc_rstn)begin if(I_vtc_rstn == 1'b0)begin //复位重置所有寄存器 addra <= 10'd0; addr0_en <= 1'b1; wea <= 1'b0; buf_flag <= 1'b0; WR_S <= 1'd0; end else begin case(WR_S) //写状态机 0:begin if(I_wave_data_de)begin //有效波形数据点 if(addra == 1023)begin //1024个数据写完 wea <= 1'b0; //停止写 addra <= 0; //相对地址设置0 addr0_en <= 1'b1; WR_S <= 1'd1;//进入状态机1 end else begin //写入1024个数据 wea <= 1'b1; //写使能 addr0_en <= 1'b0; addra <= (addr0_en == 1'b0) ? (addra + 1'b1) : 0;//相对地址递增 end end else begin wea <= 1'b0; end end 1:begin //等待VTC时序同步 if(async_vtc_vs[3:2] == 2'b10)begin//当数据同步后,准备下一次写 WR_S <= 1'd0; //回到状态0 buf_flag <= ~buf_flag;//乒乓地址切换 end end default:WR_S <= 2'd0; endcase end end
//读BRAM 状态机 always @(posedge I_vtc_clk or negedge I_vtc_rstn)begin if(I_vtc_rstn == 1'b0)begin//复位重置所有寄存器 addrb <= 10'd0; RD_S <= 1'd0; end else begin case(RD_S) 0:begin if(I_vtc_de_r)begin //I_vtc_de_r代表了有效绘制区域 if(addrb == 1023)begin //1024个数据读完 addrb <= 0; //相对地址设置0 RD_S <= 1'd1; //进入状态1 end else //没一样都会扫描所有的ADC数据 addrb <= addrb + 1'b1;//相对地址递增 end end 1:begin if(I_vtc_de_r == 0) //等待de变为0 RD_S <= 0; //回到状态0重新扫描
end default:RD_S <= 1'd0; endcase end end
wave_ram buf_inst( .dina(I_wave_data), //写入波形数据 .addra({buf_flag,addra}), //写地址,其中addra是相对地址,buf_flag是地址高位,用于读写的乒乓切换 .wea(wea), //写使能 .clka(I_wave_clk),//写时钟
.doutb(wave_data), //读出的波形数据 .addrb({~buf_flag,addrb}), //写地址,其中addrb是相对地址,buf_flag是地址高位,用于读写的乒乓切换 .clkb(I_vtc_clk)//读时钟 );
endmodule |
7.4 测试结果
7.4.1 硬件接线
以MLK-F6-7015为演示板卡,其他板卡类似
设置波形发生器产生测试波形
7.4.2 测试结果
逻辑分析仪采集的结果
附录1:FEP卡命名规则(MLK-NV2023版本)
1 FEP-DAQ模数转换类系列命名
模拟数字采集,数模转换模块命名规则
FEP:FEP系列
DAQ:模数转换系列
Num:编号
Bit:采样位宽
SPS:采样率
Channels:支持的采样速率
2 FEP-AUD音频类系列命名
音频模块命名
FEP:FEP系列
AUD:音频系列
Num:编号
Bit:采样位宽
SPS:采样率
Channels:支持的采样速率
3 FEP-COM通信类系列命名
FEP:FEP系列
COM:通用通信类模块或者IO模块
Num:编号
Class1:类型,预留
Class2:类型,预留
4 FEP-LAN通信类系列命名
FEP:FEP系列
LAN:以太网通信类
Num:编号
Class1:类型,预留
Class2:类型,预留
5 FEP-VID通信类系列命名
FEP:FEP系列
VID:视频类
Num:编号
Class1:类型,预留
Class2:类型,预留
6 FEP-CAM摄像头类
FEP:FEP系列
CAM:摄像头类
Num:编号
Class1:类型,预留
Class2:类型,预留
7 FEP-MEM存储类
FEP:FEP系列
MEM:存储类
Num:编号
Class1:类型,预留
Class2:类型,预留
附录2:常见问题
1 联系方式
技术交流群网址: https://www.uisrc.com/f-380.html查看最新可以加入的QQ群
技术微信:18951232035
技术电话:18951232035
官方微信公众号(新微信公众号):
2 售后
1、7天无理由退货(人为原因除外)
2、质保期限:本司产品自快递签收之日起,提供一年质保服务(主芯片,比如FPGA 或者CPU等除外)。
3、维修换货,需提供淘宝订单编号或合同编号,联系销售/技术支持安排退回事宜。
售后维修请登录工单系统:https://www.uisrc.com/plugin.php?id=x7ree_service
4、以下情形不属于质保范畴。
A:由于用户使用不当造成板子的损坏:比如电压过高造成的开发板短路,自行焊接造成的焊盘脱落、铜线起皮 等
B:用户日常维护不当造成板子的损坏:比如放置不当导致线路板腐蚀、基板出现裂纹等
5、质保范畴外(上方第4条)及质保期限以外的产品,本司提供有偿维修服务。维修仅收取器件材料成本,往返运 费全部由客户承担。
6、寄回地址,登录网页获取最新的售后地址:https://www.uisrc.com/t-1982.html
3 销售
天猫米联客旗舰店:https://milianke.tmall.com
京东米联客旗舰店:https://milianke.jd.com/
FPGA|SOC生态店:https://milianke.taobao.com
销售电话:18921033576
常州溧阳总部:常州溧阳市中关村吴潭渡路雅创高科制造谷 10-1幢楼
4 在线视频
https://www.uisrc.com/video.html
5 资源下载
https://www.uisrc.com/download.html
6 软件或其他下载
本文来米联客(milianke),作者:米联客(milianke),转载请注明原文链接:https://www.cnblogs.com/milianke/p/17691650.html
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)