面试刷题 - 最大连续子段和

OJ链接

LEETCODE代码

解法一

线性扫一遍

  • 计算前缀和Ai,即a1+a2+……+ai
  • 计算最小前缀和Bi,min(A1, A2, ……, Ai)
  • 则以ai结尾的最大子段和Ci=Ai-Bi
  • 另外开一个变量res,记录Ci的最小值即可
  • 时间复杂度O(n)
typedef int ll;

class Solution {
public:
    ll maxSubArray(vector<int>& nums) {
        int sz = nums.size();
        if (!sz) {
            return 0;
        }

        ll prefix_sum = nums[0];
        ll min_prefix_sum = nums[0];
        ll res = nums[0];
        for(int i=1; i<sz; i++) {
            prefix_sum += nums[i];
            res = max(res, prefix_sum- min(min_prefix_sum, 0));
            min_prefix_sum = min(min_prefix_sum, prefix_sum);
        }

        return res;
    }
};

解法二

动态规划

  • 维护以ai结尾的最大子段和Ci
  • 另外开一个变量res,记录Ci的最小值即可
  • 时间复杂度O(n)
typedef int ll;

class Solution {
public:
    ll maxSubArray(vector<int>& nums) {
        int sz = nums.size();
        if (sz == 0) {
            return 0;
        }

        ll res, current_max;
        res = current_max = nums[0];
        for (int i=1; i<sz; i++) {
            current_max = max(nums[i], current_max + nums[i]);
            res = max(res, current_max);
        }
        return res;
    }
};

解法三

分治法

  • 对于每一段,需要维护
    • 从最左侧开始的最大子段和
    • 从最右侧开始的最大子段和
    • 最大子段和
    • 总和
  • 时间复杂度O(n)
T(n) = 2T(n/2) + O(1) = 2*2T(n/2/2) + O(1) + O(1) = 2^tT(n/(2^t)) + tO(1) = 2^t + tO(1)
2^t = n
t = logn
T(n) = O(n + logn) = O(n)
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        ll left_sum, right_sum, total_sum;
        return maxSubArray(nums, 0, nums.size() - 1, left_sum, right_sum, total_sum);
    }
private:
    // 每一段需要维护
    // 总和、左侧最大和、右侧最大和,最大子段和
    ll maxSubArray(vector<int>& nums, int L, int R, ll &left_sum, ll &right_sum, ll &total_sum) {
        if (L>R) {
            return 0;
        }
        if (L==R) {
            left_sum = right_sum = total_sum = nums[L];
            return nums[L];
        }
        int mid = L + R >> 1;
        ll left_left_sum, left_right_sum, left_total_sum;
        ll right_left_sum, right_right_sum, right_total_sum;
        ll left_max_sum = maxSubArray(nums, L, mid, left_left_sum, left_right_sum, left_total_sum);
        ll right_max_sum = maxSubArray(nums, mid+1, R, right_left_sum, right_right_sum, right_total_sum);

        left_sum = max(left_left_sum, left_total_sum + right_left_sum);
        right_sum = max(right_right_sum, right_total_sum + left_right_sum);
        total_sum = left_total_sum + right_total_sum;

        return max(max(left_max_sum, right_max_sum), left_right_sum + right_left_sum);
    }
};

解法四

分治法

  • 但是不维护解法三中那一堆数据
  • 每次求跨中间最大子段和时线性扫描
  • 时间复杂度O(nlogn)
typedef int ll;

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        return maxSubArray(nums, 0, nums.size() - 1);
    }
private:
    // 每一段需要维护
    // 总和、左侧最大和、右侧最大和,最大子段和
    ll maxSubArray(vector<int>& nums, int L, int R) {
        if (L>R) {
            return 0;
        }
        if (L==R) {
            return nums[L];
        }

        int mid = L + R >> 1;
        ll left_max_sum = maxSubArray(nums, L, mid);
        ll right_max_sum = maxSubArray(nums, mid+1, R);
        ll res = max(left_max_sum, right_max_sum);

        ll tmp_left = nums[mid], rec_left = nums[mid];
        for (int i=mid-1; i>=L; i--) {
            tmp_left += nums[i];
            rec_left = max(tmp_left, rec_left);
        }

        ll tmp_right = nums[mid+1], rec_right = nums[mid+1];
        for (int i=mid+2; i<=R; i++) {
            tmp_right += nums[i];
            rec_right = max(tmp_right, rec_right);
        }

        res = max(res, rec_left + rec_right);

        return res;
    }
};

洛谷OJ测试

解法 用时(ms) 内存(MB)
149 1.87
150 1.79
168 2.19
225 1.82
posted @ 2019-09-14 23:07  MilesGO  阅读(214)  评论(0编辑  收藏  举报