增强学习笔记 第七章 多步Bootstrap

多步TD是介于单步TD和MC之间的一种方法

 

7.1 多步TD预测

首先,定义n-step return:

得出n步迭代更新:

 其中$G_t^{(n)}$满足下列误差递减性质:

当n取一个折衷值的时候,平方误差最小

 

 

7.2 n步Sarsa

将状态价值换为动作价值,重新描述$G_t^{(n)}$:

以及迭代更新式:

对应的,Expected Sarsa的G值:

 

 

 7.3 n步off-policy学习

Recall that off-policy learning is learning the value function for one policy, π, while following another policy, µ. Often, π is the greedy policy for the current actionvalue-function estimate, and µ is a more exploratory policy, perhaps ε-greedy.

 

例如,如果$\pi$中某个动作的概率是0,那么这个更新应该被忽略,如果$\pi$中某个动作的可能性更高,那么自然也应该赋予更高的更新系数。

现在照旧用Q来代替V,得到Sarsa更新式:

off-policy通常比on-policy要收敛得慢。

 

7.4 去掉Importance Sampling的Tree Backup算法

7.5 Importance Sampling和Tree Backup的组合(略)

 

posted on 2017-10-05 09:59  米老虎M  阅读(671)  评论(0编辑  收藏  举报

导航