摘要:
1.连续统假设的来源及其历史演变 连续统假设,简称CH,是康托尔在创立集合论时提出的一个问题,要了解这个问题,就必须了解康托尔是怎样建立集合论的. 康托尔采用了两种方法来构造越来越大的无穷集合 第一种方法是利用幂集合,他证明了一个集合总比其幂集合要小,而且自然数集N的幂集合P(N)与实数集R等势,即 阅读全文
摘要:
1.复数 我们把形如a+bi的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位,a,b∈R. 在复平面内,任何一个复数都可以表示为r(cosθ+isinθ)的形式,其中,θ叫做该复数的辐角,即该复数在复平面内与实数轴的夹角,r为该复数的模. 2.棣莫弗定理 对于复数Z1,Z2,若: Z1=r1 阅读全文