OpenCV 脸部跟踪(3)

   前面一篇文章我们生成了脸部特征的线性形状模型,本章来学习一下显示线性形状的代码。

线性模型类的结构如下:

class shape_model
    {                         //2d linear shape model
    public:
        Mat p;                                   //parameter vector (kx1) CV_32F,参数向量
        Mat V;                                   //shape basis (2nxk) CV_32F, line subspace,线性子空间
        Mat e;                                   //parameter variance (kx1) CV_32F 参数方差
        Mat C;                                   //connectivity (cx2) CV_32S 连通性

...

}

我们生成的线性形状模型用矩阵V表示,它是152*18,前四列是旋转缩放矩阵R,接着是保留的14副特征图像。

141134~1[6]

通过下面的代码计算平移和缩放:

float scale = calc_scale(smodel.V.col(0),200);
float tranx = n*150.0/smodel.V.col(2).dot(Mat::ones(2*n,1,CV_32F));
float trany = n*150.0/smodel.V.col(3).dot(Mat::ones(2*n,1,CV_32F));

参数p的计算如下,最后通过draw_shape函数求得生成的模型,并显示出来:

for(int k = 4; k < smodel.V.cols; k++)
{
    for(int j = 0; j < int(val.size()); j++)
    {
        Mat p = Mat::zeros(smodel.V.cols,1,CV_32F);
        p.at<float>(0) = scale;
        p.at<float>(2) = tranx;
        p.at<float>(3) = trany;
        p.at<float>(k) = scale*val[j]*3.0*sqrt(smodel.e.at<float>(k));
        p.copyTo(smodel.p);
        img = Scalar::all(255);
        char str[256];
        sprintf(str,"mode: %d, val: %f sd",k-3,val[j]/3.0);
        draw_string(img,str);
        vector<Point2f> q = smodel.calc_shape();
        draw_shape(img,q,smodel.C); //s = V*p
        imshow("shape model",img);
        if(waitKey(10) == 'q')
            return 0;
    }
}

显示结果如下图:

image

posted on   迈克老狼2012  阅读(1196)  评论(0编辑  收藏  举报

编辑推荐:
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· Vue3状态管理终极指南:Pinia保姆级教程

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5
点击右上角即可分享
微信分享提示