OpenCV教程(48) 特征值匹配
OpenCV中通过下面的代码,可以匹配两幅的图像的特征值。
// Read input images
cv::Mat image1= cv::imread("../church01.jpg",0);
cv::Mat image2= cv::imread("../church02.jpg",0);
if (!image1.data || !image2.data)
return 0;
// Display the images
cv::namedWindow("Right Image");
cv::imshow("Right Image",image1);
cv::namedWindow("Left Image");
cv::imshow("Left Image",image2);
// vector of keypoints
std::vector<cv::KeyPoint> keypoints1;
std::vector<cv::KeyPoint> keypoints2;
// Construction of the SURF feature detector
cv::SurfFeatureDetector surf(3000);
// Detection of the SURF features
surf.detect(image1,keypoints1);
surf.detect(image2,keypoints2);
std::cout << "Number of SURF points (1): " << keypoints1.size() << std::endl;
std::cout << "Number of SURF points (2): " << keypoints2.size() << std::endl;
// Draw the kepoints
cv::Mat imageKP;
cv::drawKeypoints(image1,keypoints1,imageKP,cv::Scalar(255,255,255),cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
cv::namedWindow("Right SURF Features");
cv::imshow("Right SURF Features",imageKP);
cv::drawKeypoints(image2,keypoints2,imageKP,cv::Scalar(255,255,255),cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
cv::namedWindow("Left SURF Features");
cv::imshow("Left SURF Features",imageKP);
// Construction of the SURF descriptor extractor
cv::SurfDescriptorExtractor surfDesc;
// Extraction of the SURF descriptors
cv::Mat descriptors1, descriptors2;
surfDesc.compute(image1,keypoints1,descriptors1);
surfDesc.compute(image2,keypoints2,descriptors2);
std::cout << "descriptor matrix size: " << descriptors1.rows << " by " << descriptors1.cols << std::endl;
// Construction of the matcher
cv::BruteForceMatcher<cv::L2<float>> matcher;
// Match the two image descriptors
std::vector<cv::DMatch> matches;
matcher.match(descriptors1,descriptors2, matches);
std::cout << "Number of matched points: " << matches.size() << std::endl;
std::nth_element(matches.begin(), // initial position
matches.begin()+24, // position of the sorted element
matches.end()); // end position
// remove all elements after the 25th
matches.erase(matches.begin()+25, matches.end());
cv::Mat imageMatches;
cv::drawMatches(image1,keypoints1, // 1st image and its keypoints
image2,keypoints2, // 2nd image and its keypoints
matches, // the matches
imageMatches, // the image produced
cv::Scalar(255,255,255)); // color of the lines
cv::namedWindow("Matches");
cv::imshow("Matches",imageMatches);
程序代码:工程FirstOpenCV51
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· Vue3状态管理终极指南:Pinia保姆级教程