OpenCV学习(27) 直方图(4)
我们可以利用OpenCV的直方图,backproject直方图和meanshift算法来跟踪物体。下面通过简单的例子来说明如何实现跟踪算法,我们有两幅狒狒的图片,如下图所示:我们首先在左图中框选狒狒的脸,计算出框选区域的色度(HSV空间的H)直方图,然后在image2中,backproject该直方图,得到每个像素点属于该直方图的概率图。
得到的概率图之后,我们去掉图中低饱和度的像素,然后二值化,最后对该图使用meanshift算法,得到密度最大的区域,这个区域就是我们跟踪的目标区域。
注意下面去掉低饱和度像素的方法(HSV空间中的S分量表示饱和度):
cv::cvtColor(image, hsv, CV_BGR2HSV);
// 按通道分成3副图像
cv::split(hsv,v);
// 标示低饱和度的像素
cv::threshold(v[1],v[1],minSat,255,cv::THRESH_BINARY);
// 得到色度back-projection
result= finder.find(hsv,0.0f,180.0f,ch,1);
// 减少低饱和度像素
cv::bitwise_and(result,v[1],result);
meanshift算法的代码如下,TermCriteria为迭代中值条件,最大迭代次数10,迭代精度0.01,只有这两个条件都满足的时候,迭代才会结束。迭代结束后,rect中存储的就是目标区域的位置。
cv::Rect rect(110,260,35,40);
cv::rectangle(image, rect, cv::Scalar(0,0,255));
cv::TermCriteria criteria(cv::TermCriteria::MAX_ITER,10,0.01);
cv::meanShift(result,rect,criteria);
cv::rectangle(image, rect, cv::Scalar(255,0,0));
程序代码:工程FirstOpenCV22
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· Vue3状态管理终极指南:Pinia保姆级教程