Decode Ways
题目:
A message containing letters from
A-Z
is being encoded to numbers using the following mapping:'A' -> 1 'B' -> 2 ... 'Z' -> 26Given an encoded message containing digits, determine the total number of ways to decode it.
For example,
Given encoded message"12"
, it could be decoded as"AB"
(1 2) or"L"
(12).The number of ways decoding
"12"
is 2.
很容易想到的是,当前问题依赖子问题的解,并且发现解与解有相交,如果解之间没有重复,可以直接分治,否则就动态规划啦。刚开始写出了递推式:
f(n-1)+f(n-2) s[1]>'0'且s[0]=='1'或s[0]=='2',s[1]<'7'
f(n)={
f(n-1) 其它
还想侥幸试试,结果肯定超时,既然超时那就DP吧,直接跟斐波那契一样,bottom-up来搞。代码:
1 int numDecodings(string s) { 2 int len = s.length(); 3 if(len==0||s[0]=='0') return 0; 4 if(len==1) return s[0]>'0'?1:0; 5 int n_1,n_2,result,j=len-1; 6 n_1=s[j]>'0'?1:0; 7 for(j-=1;j>=0;j--){ 8 if(s[j]<'3'&&s[j]>'0'){ 9 if(s[j+1]>'0'&&((s[j]=='2'&&s[j+1]<'7')||s[j]=='1')){ 10 result = n_1+(j==len-2?1:n_2); 11 } 12 else if(s[j+1]=='0'){ 13 result = (j==len-2?1:n_2); 14 } 15 else{ 16 result = n_1; 17 } 18 } 19 else if(s[j+1]=='0'){ 20 return 0; 21 } 22 else{ 23 result = n_1; 24 } 25 n_2=n_1; 26 n_1=result; 27 } 28 return result; 29 }
28ms pass.中间判断时,若发现没办法解了直接返回0就行了,例如,2001之类,还有字符串为空或以0开头就直接返回0。