11 2018 档案

摘要:1.使用朴素贝叶斯模型对iris数据集进行花分类 尝试使用3种不同类型的朴素贝叶斯: 高斯分布型 多项式型 伯努利型 2.使用sklearn.model_selection.cross_val_score(),对模型进行验证。 3. 垃圾邮件分类 数据准备: 用csv读取邮件数据,分解出邮件类别及邮 阅读全文
posted @ 2018-11-22 11:13 MIEhaha 编辑
摘要:1.理解分类与监督学习、聚类与无监督学习。 简述分类与聚类的联系与区别。 简述什么是监督学习与无监督学习。 2.朴素贝叶斯分类算法 实例 利用关于心脏情患者的临床数据集,建立朴素贝叶斯分类模型。 有六个分类变量(分类因子):性别,年龄、KILLP评分、饮酒、吸烟、住院天数 目标分类变量疾病:–心梗– 阅读全文
posted @ 2018-11-18 21:43 MIEhaha 编辑
摘要:运行结果: 贝叶斯算法: 理解贝叶斯定理: M桶:7红3黄 N桶:1红9黄 现在:拿出了一个红球 试问:这个红球是M、N桶拿出来的概率分别是多少? 阅读全文
posted @ 2018-11-05 17:49 MIEhaha 阅读(200) 评论(0) 推荐(0) 编辑