第八次作业

1.用python实现K均值算法
import numpy as np
x = np.random.randint(1,50,[20,1])
y = np.zeros(20)
k = 3
def initcenter(x,k):
    return x[:k]

kc = initcenter(x,k)
kc
def nearest(kc,i):
    d=(abs(kc-i))
    w=np.where(d==np.min(d))
    return w[0][0]

kc = initcenter(x,k)
nearest(kc,93)
def xclassify(x,y,kc):
    for i in range(x.shape[0]):
        y[i] = nearest(kc,x[i])
    return y

kc = initcenter(x,k)
y = xclassify(x,y,kc)
print(kc,y)
def kcmean(x,y,kc,k):
    l = list(kc)
    flag = False
    for c in range(k):
        m = np.where(y == c)
        n = np.mean(x[m])
        if l[c] != n:
            l[c] = n
            flag = True
            print(l,flag)
    return (np.array(l),flag)

kc = initcenter(x,k)
flag = True
k = 3


while flag:
    y = xclassify(x,y,kc)
    kc,flag = kcmean(x,y,kc,k)  

 

 

2. 鸢尾花花瓣长度数据做聚类并用散点图显示。

#鸢尾花花瓣长度数据做聚类并用散点图显示。
import numpy as np
from sklearn.datasets import load_iris    
iris = load_iris()
x = iris.data[:,2]
y = np.zeros(150)

def initcenter(x,k):    #初始聚类中心数组
    return x[:k]

def nearest(kc,i):       #数组中的值,与聚类中心最小距离所在类别的索引号
    d = (abs(kc-i))
    w = np.where(d == np.min(d))
    return w[0][0]

def xclassify(x,y,kc):
    for i in range(x.shape[0]):       #对数组的每个值进行分类,shape[0]读取矩阵第一维度的长度
        y[i] = nearest(kc,x[i])
    return y

def kcmean(x,y,kc,k):     #计算各聚类新均值
    l = list(kc)
    flag = False
    for c in range(k):
        print(c)
        m = np.where(y == c)
        if len(m) == 1:
            n = x[c]
        else:
            n=np.mean(x[m])
        if l[c] != n:
            l[c] = n
            flag = True     #聚类中心发生变化
            print(l,flag)
    return (np.array(l),flag)


k = 3
kc = initcenter(x,k)

flag = True
print(x,y,kc,flag)

#判断聚类中心和目标函数的值是否发生改变,若不变,则输出结果,若改变,则返回2
while flag:
    y = xclassify(x,y,kc)
    kc, flag = kcmean(x,y,kc,k)
    print(y,kc,type(kc))
    
print(x,y)
import matplotlib.pyplot as plt
plt.scatter(x,x,c=y,s=50,cmap="Paired");
plt.show()

  

运行结果:

 

3. 用sklearn.cluster.KMeans,鸢尾花花瓣长度数据做聚类并用散点图显示.

#用sklearn.cluster.KMeans,鸢尾花花瓣长度数据做聚类并用散点图显示,鸢尾花完整数据做聚类并用散点图显示。
from sklearn.cluster import KMeans
import numpy as np
from sklearn.datasets import load_iris  
import matplotlib.pyplot as plt
data = load_iris()
iris = data.data
petal_len = iris[:,2:3]
print(petal_len)
k_means = KMeans(n_clusters=3) #三个聚类中心
result = k_means.fit(petal_len) #Kmeans自动分类
kc = result.cluster_centers_ #自动分类后的聚类中心
y_means = k_means.predict(petal_len) #预测Y值
plt.scatter(petal_len,np.linspace(1,150,150),c=y_means,marker='x')
plt.show()

  

运行结果:

 

 

4. 鸢尾花完整数据做聚类并用散点图显示.

 

#4. 鸢尾花完整数据做聚类并用散点图显示.
from sklearn.cluster import KMeans
import numpy as np
from sklearn.datasets import load_iris  
import matplotlib.pyplot as plt
data = load_iris()
iris = data.data
petal_len = iris
print(petal_len)
k_means = KMeans(n_clusters=3) #三个聚类中心
result = k_means.fit(petal_len) #Kmeans自动分类
kc = result.cluster_centers_ #自动分类后的聚类中心
y_means = k_means.predict(petal_len) #预测Y值
plt.scatter(petal_len[:,0],petal_len[:,2],c=y_means,marker='x')
plt.show()

  

运行结果:

 

posted @ 2018-10-26 12:50  MIEhaha  阅读(194)  评论(0编辑  收藏  举报