朴素贝叶斯应用:垃圾邮件分类
import csv # 读数据 file_path = r'EmailData.txt' EmailData = open(file_path,'r',encoding='utf-8') Email_data = [] Email_target = [] csv_reader = csv.reader(EmailData,delimiter='\t') # 将数据分别存入数据列表和目标分类列表 for line in csv_reader: Email_data.append(line[1]) Email_target.append(line[0]) EmailData.close() # 把无意义的符号都替换成空格 Email_data_clear = [] for line in Email_data: # line :'Go until jurong point, crazy.. Available only in bugis n great world la e buffet...' # 每一行都去掉无意义符号并按空格分词 for char in line: if char.isalpha() is False: # 不是字母,发生替换操作: newString = line.replace(char," ") tempList = newString.split(" ") # 将处理好后的一行数据追加到存放干净数据的列表 Email_data_clear.append(tempList) # 去掉长度不大于3的词和没有语义的词 Email_data_clear2 = [] for line in Email_data_clear: tempList = [] for word in line: if word != '' and len(word) > 3 and word.isalpha(): tempList.append(word) tempString = ' '.join(tempList) Email_data_clear2.append(tempString) Email_data_clear = Email_data_clear2 # 将数据分为训练集和测试集 from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test = train_test_split(Email_data_clear2,Email_target,test_size=0.3,random_state=0,stratify=Email_target) # 建立数据的特征向量 from sklearn.feature_extraction.text import TfidfVectorizer tfidf = TfidfVectorizer() X_train = tfidf.fit_transform(x_train) X_test = tfidf.transform(x_test) # 观察向量 import numpy as np X_train = X_train.toarray() X_test = X_test.toarray() X_train.shape # 输出不为0的列 for i in range(X_train.shape[0]): for j in range(X_train.shape[1]): if X_train[i][j] != 0: print(i,j,X_train[i][j]) # 建立模型 from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() module = gnb.fit(X_train,y_train) y_predict = module.predict(X_test) # 输出模型分类的各个指标 from sklearn.metrics import classification_report cr = classification_report(y_predict,y_test) print(cr)