二.LinkedList原理及实现学习总结
一、LinkedList实现原理概述
LinkedList 和 ArrayList 一样,都实现了 List 接口,但其内部的数据结构有本质的不同。LinkedList 是基于链表实现的(通过名字也能区分开来),所以它的插入和删除操作比 ArrayList 更加高效。但也是由于其为基于链表的,所以随机访问的效率要比 ArrayList 差。
二、LinkedList类定义
1 public class LinkedList<E> 2 extends AbstractSequentialList<E> 3 implements List<E>, Deque<E>, Cloneable, java.io.Serializable
- LinkedList 是一个继承于AbstractSequentialList的双向链表。它也可以被当作堆栈、队列或双端队列进行操作。
- LinkedList 实现 List 接口,能对它进行队列操作。
- LinkedList 实现 Deque 接口,即能将LinkedList当作双端队列使用。
- LinkedList 实现了Cloneable接口,即覆盖了函数clone(),能克隆。
- LinkedList 实现java.io.Serializable接口,这意味着LinkedList支持序列化,能通过序列化去传输。
- LinkedList 是非同步的。
为什么要继承自AbstractSequentialList ?
AbstractSequentialList 实现了get(int index)、set(int index, E element)、add(int index, E element) 和 remove(int index)这些骨干性函数。降低了List接口的复杂度。这些接口都是随机访问List的,LinkedList是双向链表;既然它继承于AbstractSequentialList,就相当于已经实现了“get(int index)这些接口”。
此外,我们若需要通过AbstractSequentialList自己实现一个列表,只需要扩展此类,并提供 listIterator() 和 size() 方法的实现即可。若要实现不可修改的列表,则需要实现列表迭代器的 hasNext、next、hasPrevious、previous 和 index 方法即可。
LinkedList的类图关系:
三、LinkedList数据结构原理
LinkedList底层的数据结构是基于双向循环链表的,且头结点中不存放数据,如下:
既然是双向链表,那么必定存在一种数据结构——我们可以称之为节点,节点实例保存业务数据,前一个节点的位置信息和后一个节点位置信息,如下图所示:
四、私有属性
LinkedList中之定义了两个属性:
1 private transient Entry<E> header = new Entry<E>(null, null, null); 2 private transient int size = 0;
header是双向链表的头节点,它是双向链表节点所对应的类Entry的实例。Entry中包含成员变量: previous, next, element。其中,previous是该节点的上一个节点,next是该节点的下一个节点,element是该节点所包含的值。
size是双向链表中节点实例的个数。
首先来了解节点类Entry类的代码。
1 private static class Entry<E> { 2 E element; 3 Entry<E> next; 4 Entry<E> previous; 5 6 Entry(E element, Entry<E> next, Entry<E> previous) { 7 this.element = element; 8 this.next = next; 9 this.previous = previous; 10 } 11 }
节点类很简单,element存放业务数据,previous与next分别存放前后节点的信息(在数据结构中我们通常称之为前后节点的指针)。
}
五、构造方法
LinkedList提供了两个构造方法。
1 public LinkedList() { 2 header.next = header.previous = header; 3 } 4 public LinkedList(Collection<? extends E> c) { 5 this(); 6 addAll(c);
第一个构造方法不接受参数,将header实例的previous和next全部指向header实例(注意,这个是一个双向循环链表,如果不是循环链表,空链表的情况应该是header节点的前一节点和后一节点均为null),这样整个链表其实就只有header一个节点,用于表示一个空的链表。
执行完构造函数后,header实例自身形成一个闭环,如下图所示:
第二个构造方法接收一个Collection参数c,调用第一个构造方法构造一个空的链表,之后通过addAll将c中的元素全部添加到链表中。
六、元素添加
下面说明双向链表添加元素add()的原理:
1 // 将元素(E)添加到LinkedList中 2 public boolean add(E e) { 3 // 将节点(节点数据是e)添加到表头(header)之前。 4 // 即,将节点添加到双向链表的末端。 addBefore(e, header); 5 return true; 6 } 7 8 public void add(int index, E element) { 9 addBefore(element, (index==size ? header : entry(index))); 10 } 11 12 private Entry<E> addBefore(E e, Entry<E> entry) { 13 Entry<E> newEntry = new Entry<E>(e, entry, entry.previous); 14 newEntry.previous.next = newEntry; 15 newEntry.next.previous = newEntry; 16 size++; 17 modCount++; 18 return newEntry; 19 }
addBefore(E e,Entry entry)方法是个私有方法,所以无法在外部程序中调用(当然,这是一般情况,你可以通过反射上面的还是能调用到的)。
addBefore(E e,Entry entry)先通过Entry的构造方法创建e的节点newEntry(包含了将其下一个节点设置为entry,上一个节点设置为entry.previous的操作,相当于修改newEntry的“指针”),之后修改插入位置后newEntry的前一节点的next引用和后一节点的previous引用,使链表节点间的引用关系保持正确。之后修改和size大小和记录modCount,然后返回新插入的节点。
下面分解“添加第一个数据”的步骤:
第一步:初始化后LinkedList实例的情况:
第二步:初始化一个预添加的Entry实例(newEntry)。
Entry newEntry = newEntry(e, entry, entry.previous);
第三步:调整新加入节点和头结点(header)的前后指针。
newEntry.previous.next = newEntry;
newEntry.previous即header,newEntry.previous.next即header的next指向newEntry实例。在上图中应该是“4号线”指向newEntry。
newEntry.next.previous = newEntry;
newEntry.next即header,newEntry.next.previous即header的previous指向newEntry实例。在上图中应该是“3号线”指向newEntry。
调整后如下图所示:
图——加入第一个节点后LinkedList示意图
下面分解“添加第二个数据”的步骤:
第一步:新建节点。
图——添加第二个节点
第二步:调整新节点和头结点的前后指针信息。
图——调整前后指针信息
添加后续数据情况和上述一致,LinkedList实例是没有容量限制的。
总结,addBefore(E e,Entry entry)实现在entry之前插入由e构造的新节点。而add(E e)实现在header节点之前插入由e构造的新节点。为了便于理解,下面给出插入节点的示意图。
1 public void addFirst(E e) { 2 addBefore(e, header.next); 3 } 4 5 public void addLast(E e) { 6 addBefore(e, header); 7 }
看上面的示意图,结合addBefore(E e,Entry entry)方法,很容易理解addFrist(E e)只需实现在header元素的下一个元素之前插入,即示意图中的一号之前。addLast(E e)只需在实现在header节点前(因为是循环链表,所以header的前一个节点就是链表的最后一个节点)插入节点(插入后在2号节点之后)。
七、删除数据remove()
1 public E remove(int index) { 2 Entry e = get(index); 3 remove(e); 4 return e.element; 5 } 6 7 private void remove(E e) { 8 if (e == header) 9 throw new NoSuchElementException(); 10 // 将前一节点的next引用赋值为e的下一节点 11 e.previous.next = e.next; 12 // 将e的下一节点的previous赋值为e的上一节点 13 e.next.previous = e.previous; 14 // 上面两条语句的执行已经导致了无法在链表中访问到e节点,而下面解除了e节点对前后节点的引用 15 e.next = e.previous = null; 16 // 将被移除的节点的内容设为null 17 e.element = null; 18 // 修改size大小 19 size--; 20 }
由于删除了某一节点因此调整相应节点的前后指针信息,如下:
e.previous.next = e.next;//预删除节点的前一节点的后指针指向预删除节点的后一个节点。
e.next.previous = e.previous;//预删除节点的后一节点的前指针指向预删除节点的前一个节点。
清空预删除节点:
e.next = e.previous = null;
e.element = null;
交给gc完成资源回收,删除操作结束。
与ArrayList比较而言,LinkedList的删除动作不需要“移动”很多数据,从而效率更高。
八、数据获取get()
Get(int)方法的实现在remove(int)中已经涉及过了。首先判断位置信息是否合法(大于等于0,小于当前LinkedList实例的Size),然后遍历到具体位置,获得节点的业务数据(element)并返回。
注意:为了提高效率,需要根据获取的位置判断是从头还是从尾开始遍历。
1 // 获取双向链表中指定位置的节点 2 private Entry<E> entry(int index) { 3 if (index < 0 || index >= size) 4 throw new IndexOutOfBoundsException("Index: "+index+ 5 ", Size: "+size); 6 Entry<E> e = header; 7 // 获取index处的节点。 8 // 若index < 双向链表长度的1/2,则从前先后查找; 9 // 否则,从后向前查找。 10 if (index < (size >> 1)) { 11 for (int i = 0; i <= index; i++) 12 e = e.next; 13 } else { 14 for (int i = size; i > index; i--) 15 e = e.previous; 16 } 17 return e; 18 }
注意细节:位运算与直接做除法的区别。先将index与长度size的一半比较,如果index
九、 清除数据clear()
1 public void clear() { 2 Entry<E> e = header.next; 3 // e可以理解为一个移动的“指针”,因为是循环链表,所以回到header的时候说明已经没有节点了 4 while (e != header) { 5 // 保留e的下一个节点的引用 6 Entry<E> next = e.next; 7 // 解除节点e对前后节点的引用 8 e.next = e.previous = null; 9 // 将节点e的内容置空 10 e.element = null; 11 // 将e移动到下一个节点 12 e = next; 13 } 14 // 将header构造成一个循环链表,同构造方法构造一个空的LinkedList 15 header.next = header.previous = header; 16 // 修改size 17 size = 0; 18 modCount++; 19 }
十、数据包含 contains(Object o)
1 public boolean contains(Object o) { 2 return indexOf(o) != -1; 3 } 4 // 从前向后查找,返回“值为对象(o)的节点对应的索引” 不存在就返回-1 5 public int indexOf(Object o) { 6 int index = 0; 7 if (o==null) { 8 for (Entry e = header.next; e != header; e = e.next) { 9 if (e.element==null) 10 return index; 11 index++; 12 } 13 } else { 14 for (Entry e = header.next; e != header; e = e.next) { 15 if (o.equals(e.element)) 16 return index; 17 index++; 18 } 19 } 20 return -1; 21 }
indexOf(Object o)判断o链表中是否存在节点的element和o相等,若相等则返回该节点在链表中的索引位置,若不存在则放回-1。
contains(Object o)方法通过判断indexOf(Object o)方法返回的值是否是-1来判断链表中是否包含对象o。
十一、数据复制clone()与toArray()
clone()
1 public Object clone() { 2 LinkedList<E> clone = null; 3 try { 4 clone = (LinkedList<E>) super.clone(); 5 } catch (CloneNotSupportedException e) { 6 throw new InternalError(); 7 } 8 clone.header = new Entry<E>(null, null, null); 9 clone.header.next = clone.header.previous = clone.header; 10 clone.size = 0; 11 clone.modCount = 0; 12 for (Entry<E> e = header.next; e != header; e = e.next) 13 clone.add(e.element); 14 return clone; 15 }
调用父类的clone()方法初始化对象链表clone,将clone构造成一个空的双向循环链表,之后将header的下一个节点开始将逐个节点添加到clone中。最后返回克隆的clone对象。
toArray()
1 public Object[] toArray() { 2 Object[] result = new Object[size]; 3 int i = 0; 4 for (Entry<E> e = header.next; e != header; e = e.next) 5 result[i++] = e.element; 6 return result; 7 }
创建大小和LinkedList相等的数组result,遍历链表,将每个节点的元素element复制到数组中,返回数组。
toArray(T[] a)
1 public <T> T[] toArray(T[] a) { 2 if (a.length < size) 3 a = (T[])java.lang.reflect.Array.newInstance( 4 a.getClass().getComponentType(), size); 5 int i = 0; 6 Object[] result = a; 7 for (Entry<E> e = header.next; e != header; e = e.next) 8 result[i++] = e.element; 9 if (a.length > size) 10 a[size] = null; 11 return a; 12 }
先判断出入的数组a的大小是否足够,若大小不够则拓展。这里用到了发射的方法,重新实例化了一个大小为size的数组。之后将数组a赋值给数组result,遍历链表向result中添加的元素。最后判断数组a的长度是否大于size,若大于则将size位置的内容设置为null。返回a。
从代码中可以看出,数组a的length小于等于size时,a中所有元素被覆盖,被拓展来的空间存储的内容都是null;若数组a的length的length大于size,则0至size-1位置的内容被覆盖,size位置的元素被设置为null,size之后的元素不变。
为什么不直接对数组a进行操作,要将a赋值给result数组之后对result数组进行操作?
十二、遍历数据:Iterator()
LinkedList的Iterator
除了Entry,LinkedList还有一个内部类:ListItr。
ListItr实现了ListIterator接口,可知它是一个迭代器,通过它可以遍历修改LinkedList。
在LinkedList中提供了获取ListItr对象的方法:listIterator(int index)。
1 public ListIterator<E> listIterator(int index) { 2 return new ListItr(index); 3 }
该方法只是简单的返回了一个ListItr对象。
LinkedList中还有通过集成获得的listIterator()方法,该方法只是调用了listIterator(int index)并且传入0。
转载链接:【数据结构】LinkedList原理及实现学习总结