c++实现搜索二叉树
第一次接触树,各种递归搞得眼花,总算是按书上的代码,敲了下来,记录一下
/** * Created by admin on 2021/10/27. * 搜索二叉树实现 */ #ifndef HELLOWORLD_BINARY_SEARCH_TREE_H #define HELLOWORLD_BINARY_SEARCH_TREE_H #include <istream> template <typename Object> class BinarySearchTree{ struct TreeNode{ Object object; // 数据 TreeNode *left; // 左子树指针 TreeNode *right; // 右子树指针 }; // 二进制树 TreeNode *root; // 根节点 void insert(const Object &, TreeNode *&); // 插入元素 void printTree(TreeNode *&); // 打印树 bool contain(const Object&, TreeNode *&); // 查找树中是否有该元素 TreeNode *findMax(TreeNode *&); // 找最大值 TreeNode *findMin(TreeNode *&); // 找最小值 void remove(const Object &object, TreeNode *&); void makeEmpty(TreeNode *&); TreeNode *clone(TreeNode *); public: BinarySearchTree(): root(nullptr){}; // 普通构造函数 ~BinarySearchTree(){ makeEmpty(root);} // 析构函数 BinarySearchTree(const BinarySearchTree &rhs): root(nullptr){root = clone(rhs.root);} void insert(const Object &object){ insert(object, root);} // 插入数据 void printTree(){ printTree(root);}; // 打印树 bool contain(const Object &object){ return contain(object, root);} const Object &findMax(){return findMax(root)->object;} // 找最大值 const Object &findMin(){return findMin(root)->object;} // 找最小值 void remove(const Object &object){remove(object, root);} // 删除元素 }; template<typename Object> void BinarySearchTree<Object>::insert(const Object &object, TreeNode *&treeNode) { if (treeNode == nullptr) treeNode = new TreeNode{object, nullptr, nullptr}; // 新建节点 else if (object < treeNode->object) insert(object, treeNode->left); // 向左递归插入 else if (object > treeNode->object) insert(object, treeNode->right); // 向左递归插入 } template<typename Object> void BinarySearchTree<Object>::printTree(BinarySearchTree::TreeNode *&treeNode) { if (treeNode == nullptr) return; std::cout << treeNode->object; // 前序打印 if (treeNode->left != nullptr) printTree(treeNode->left); if (treeNode->right != nullptr) printTree(treeNode->right); } template<typename Object> bool BinarySearchTree<Object>::contain(const Object &object, BinarySearchTree::TreeNode *&treeNode) { if (treeNode == nullptr) return false; else if (object < treeNode->object) contain(object, treeNode->left); else if (object > treeNode->object) contain(object, treeNode->right); else return true; // 匹配 } template<typename Object> typename BinarySearchTree<Object>::TreeNode *BinarySearchTree<Object>::findMax(BinarySearchTree::TreeNode *&treeNode) { if (treeNode == nullptr) return nullptr; if (treeNode->right == nullptr) return treeNode; return findMax(treeNode->right); } template<typename Object> typename BinarySearchTree<Object>::TreeNode *BinarySearchTree<Object>::findMin(BinarySearchTree::TreeNode *&treeNode) { if (treeNode == nullptr) return nullptr; if (treeNode->left == nullptr) return treeNode; return findMin(treeNode->left); } template<typename Object> void BinarySearchTree<Object>::remove(const Object &object, BinarySearchTree::TreeNode *&treeNode) { if (treeNode == nullptr) return; else if (object < treeNode->object) remove(object, treeNode->left); else if (object > treeNode->object) remove(object, treeNode->right); else if (treeNode->left != nullptr && treeNode->right != nullptr){ // 双节点的情况 treeNode->object = findMin(treeNode->right)->object; // 值用右树最小值替换 remove(treeNode->object, treeNode->right); // 找到替换的节点 }else{ TreeNode *oldTreeNode = treeNode; treeNode = treeNode->left != nullptr? treeNode->left: treeNode->right; delete oldTreeNode; } } template<typename Object> void BinarySearchTree<Object>::makeEmpty(BinarySearchTree::TreeNode *&treeNode) { if (treeNode == nullptr) return; makeEmpty(treeNode->left); makeEmpty(treeNode->right); delete treeNode; treeNode = nullptr; } template<typename Object> typename BinarySearchTree<Object>::TreeNode *BinarySearchTree<Object>::clone(BinarySearchTree::TreeNode *treeNode) { if (treeNode == nullptr) return nullptr; else return new TreeNode{treeNode->object, clone(treeNode->left), clone(treeNode->right)}; } #endif //HELLOWORLD_BINARY_SEARCH_TREE_H