让C#轻松实现读写锁分离

让C#轻松实现读写锁分离--封装ReaderWriterLockSlim

ReaderWriterLockSlim 类
表示用于管理资源访问的锁定状态,可实现多线程读取或进行独占式写入访问。

使用 ReaderWriterLockSlim 来保护由多个线程读取但每次只采用一个线程写入的资源。 ReaderWriterLockSlim 允许多个线程均处于读取模式,允许一个线程处于写入模式并独占锁定状态,同时还允许一个具有读取权限的线程处于可升级的读取模式,在此模式下线程无需放弃对资源的读取权限即可升级为写入模式。

注意 ReaderWriterLockSlim 类似于 ReaderWriterLock,只是简化了递归、升级和降级锁定状态的规则。 ReaderWriterLockSlim 可避免多种潜在的死锁情况。 此外,ReaderWriterLockSlim 的性能明显优于 ReaderWriterLock。 建议在所有新的开发工作中使用 ReaderWriterLockSlim。

以上引用自MSDN

ps:该类在.NET3.5中提供,如需要在2.0中使用请换ReaderWriterLock,用法差不多改了写方法名,MSDN中说ReaderWriterLockSlim性能比较高

主要属性,方法
 

属性:

IsReadLockHeld   获取一个值,该值指示当前线程是否已进入读取模式的锁定状态。
IsWriteLockHeld    获取一个值,该值指示当前线程是否已进入写入模式的锁定状态。
方法:

EnterReadLock       尝试进入读取模式锁定状态。
ExitReadLock         减少读取模式的递归计数,并在生成的计数为 0(零)时退出读取模式。
EnterWriteLock      尝试进入写入模式锁定状态。
ExitWriteLock        减少写入模式的递归计数,并在生成的计数为 0(零)时退出写入模式。

当然还有其他很多方法,比如EnterUpgradeableReadLock进入可以升级到写入模式的读取模式..

不过我需要封装的对象相对来说较为简单,所以不需要用这些额外的方法和属性,有兴趣的可以自己去研究下

应用
来对比一个老式的lock写法


private object _Lock = new object();

private void Read()
{
lock (_Lock)
{
//具体方法实现
}
}

private void Write()
{
lock (_Lock)
{
//具体方法实现
}
}

读写锁分离


private ReaderWriterLockSlim _LockSlim = new ReaderWriterLockSlim();

private void Read()
{
try
{
_LockSlim.EnterReadLock();
//具体方法实现
}
finally
{
_LockSlim.ExitReadLock();
}
}

private void Write()
{
try
{
_LockSlim.EnterWriteLock();
//具体方法实现
}
finally
{
_LockSlim.ExitWriteLock();
}
}

 看上下2种写法:

从性能的角度来说,肯定是读写锁分离更好了,特别是大多数场合(读取操作远远多余写入操作)

从可读性和代码美观度来说,就是上面的lock要简洁的多了,维护起来也更清晰

所以我希望重新封装ReaderWriterLockSlim,当然我第一想到的就是using了,利用using语法糖的特性封装一个新的对象

封装
Code平台: UsingLock

由于是利用的using的语法,所以我直接取名叫UsingLock,简单好记

UsingLock源码
 

方法:

Read()     进入读取锁定模式

Write()    进入写入锁定模式

另外我还加入2个额外的属性

Data        UsingLock中可以保存一个数据,由当前线程中的环境判断是否可以读取或设置该对象

Enabled   是否启用当前组件..这个有妙用,下面介绍

使用场合
MyQueue
我这里假设了一个队列系统,把最容易出现问题的修改集合和枚举集合2个操作公开出来,方便在多线程中测试效果

以下为测试代码:


static void Main(string[] args)
{
//建立一个字符串集合,总数为1000
List<string> list = new List<string>(1000);
for (int i = 0; i < list.Capacity; i++)
{
list.Add("字符串:" + i);
}

MyQueue mq = new MyQueue(list);
//保存最后一个值,等下用于做比较
string last = list[list.Count - 1];
//开启1000个线程,同时执行LootFirst方法,并打印出结果
for (int i = 0; i < list.Capacity; i++)
{
ThreadPool.QueueUserWorkItem(o =>
{
Console.WriteLine(mq.LootFirst());
});
}
//在主线程中不停调用mq的遍历方法,这样的操作是很容易出现线程争抢资源的,如果没有锁定访问机制,就会出现异常
while (mq.Count > 0)
{
foreach (var item in mq)
{
//如果最后一个值还在,就输出 "还在"
if (item == last)
{
Console.WriteLine("还在");
}
}
}
}

测试结果

Release模式下也是很轻松就跑完了,证明访问的同步控制部分是可以正常工作的

 

使用详细说明
语法上是不是跟lock比较类似了?Enabled属性的作用在这里就可见一斑了

 

这部分比较简单,就不多说了.....

对比无lock
当然写完可以用,还需要和原始的方式比较一下,不然不知道优劣

对比无lock模式

 

将using代码注释,果然出现了异常

对比原始单一lock
对比原始lock模式,这次需要加上时间

UsingLock VS 单一lock

 

--------

 

 Code平台下载
https://code.csdn.net/snippets/112634

posted @ 2017-02-20 10:36  特洛伊-Micro  阅读(713)  评论(0编辑  收藏  举报