TensorFlow基础
Tensor介绍
在介绍之前,首先要记住一个结论:TensorFlow使用Tensor来表示数据
接着我们来看看什么是Tensor,在官网的文档中,Tensor被翻译成”张量“。其中也给出了一个定义:
张量是对矢量和矩阵向潜在的更高维度的泛化,TensorFlow 在内部将张量表示为基本数据类型的n维数组。
其中,也看到了一种相对通俗易懂的定义:
一个量, 在不同的参考系下按照某种特定的法则进行变换, 就是张量.
Tensor数据类型
TensorFlow 在内部将张量表示为基本数据类型的 n维数组,没错的。在一个数组里边,我们总得知道我们的存进去的数据究竟是什么类型。
Tensor的数据类型如下所示:
特殊的张量
特殊的张量由一下几种:
tf.Variable
— 变量tf.constant
— 常量tf.placeholder
—占位符tf.SparseTensor
—稀疏张量
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构