AI学习干货平台

看了那么多关于AI的视频和书,感觉这个资料库的内容确实可以的。

简单易懂,而且图文并茂。(举例)

假设我们有表1-1所示的训练数据样本。

表1-1 训练样本示例

Idx1x2x3Y
1 0.5 1.4 2.7 3
2 0.4 1.3 2.5 5
3 0.1 1.5 2.3 9
4 0.5 1.7 2.9 1

其中,x1,x2,x3 是每一个样本数据的三个特征值,Y 是样本的真实结果值:

  1. 随机初始化权重矩阵,可以根据正态分布等来初始化。这一步可以叫做“猜”,但不是瞎猜;
  2. 拿一个或一批数据作为输入,带入权重矩阵中计算,再通过激活函数传入下一层,最终得到预测值。在本例中,我们先用Id-1的数据输入到矩阵中,得到一个 A 值,假设 A=5;
  3. 拿到Id-1样本的真实值 Y=3;
  4. 计算损失,假设用均方差函数 Loss=(A−Y)2=(5−3)2=4;
  5. 根据一些神奇的数学公式(反向微分),把 Loss=4 这个值用大喇叭喊话,告诉在前面计算的步骤中,影响 A=5 这个值的每一个权重矩阵,然后对这些权重矩阵中的值做一个微小的修改(当然是向着好的方向修改,这一点可以用数学家的名誉来保证);
  6. 用Id-2样本作为输入再次训练(Go to 2);
  7. 这样不断地迭代下去,直到以下一个或几个条件满足就停止训练:损失函数值非常小;准确度满足了要求;迭代到了指定的次数。

训练完成后,我们会把这个神经网络中的结构和权重矩阵的值导出来,形成一个计算图(就是矩阵运算加上激活函数)模型,然后嵌入到任何可以识别/调用这个模型的应用程序中,根据输入的值进行运算,输出预测值。

 

 

这是一个免费的AI学习干货平台。

该社区由微软亚洲研究院人工智能教育团队创立,集合了微软与高校教师、开发者共享的人工智能教学大纲和课件、案例资源、开发工具与环境搭建教程等,更有微软顶级工程师互动答疑,是最酷的AI教育学习第一站!

https://github.com/microsoft/ai-edu

 

posted @   麦克*堂  阅读(81)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
点击右上角即可分享
微信分享提示