Spherical harmonics

Spherical harmonics

Wiki: Spherical harmonics forms a complete orthogonal functions with each function defined on the sphere.

Reference Video

Spherical harmonics play important roles in Orbital Angular Momentum in quantum mechanis.

We have the following eigen value equations for \(L^2\) and \(L_z\):

\[\hat{L}^2Y_l^m(\theta,\phi)=l(l+1)\hbar^2Y_l^m(\theta,\phi)\\ \hat{L}_zY_l^m(\theta,\phi)=m\hbar Y_l^m(\theta,\phi)\\ \text{Here: }l=0,1,2,\cdots \quad m=-l,-l+1,\cdots,0,\cdots,l-1,l \]

The sperical harmonics is defined as:

\[Y_l^m(\theta,\phi)=\frac{(-1)^l}{2^ll!}\sqrt{\frac{(2l+1)(l+m)!}{4\pi(l-m)!}}e^{im\phi}(\sin\theta)^{-m}\frac{d^{l-m}}{d^{l-m}(\cos\theta)}(\sin\theta)^{2l}\\ =(-1)^m\sqrt{\frac{(2l+1)(l+m)}{4\pi(l-m)!}}e^{im\phi}P_l^m(\cos\theta) \]

Here \(P_l^m(\cos\theta)\) is called associated Legendre polynomial.

Consider mutiple values of \((l,m)\):

  • \(l=0,m=0\):

\[Y_0^0(\theta,\phi) = \frac{(-1)^0}{2^0\times0!}\sqrt{\frac{(0+1)\times0!}{4\pi\times0!}}e^0(\sin\theta)^0\frac{d^0}{d^0(\cos\theta)}(\sin\theta)^0=\frac{1}{\sqrt{4\pi}} \]

  • \(l=1,m=-1\):

\[Y_1^{-1}(\theta,\phi) = \frac{(-1)^1}{2^1\times1!}\sqrt{\frac{(2+1)\times(1-1)!}{4\pi\times(1+1)!}}e^{-i\phi}(\sin\theta)^1\frac{d^2}{d^2(\cos\theta)}(\sin\theta)^2\\ =-\frac{1}{2}\sqrt{\frac{3}{8\pi}}e^{-i\phi}\sin\theta\frac{d^2}{d^2(\cos\theta)}(1-\cos^2\theta)\\ =-\frac{1}{2}\sqrt{\frac{3}{8\pi}}e^{-i\phi}\sin\theta(-2)\\ =\sqrt{\frac{3}{8\pi}}e^{-i\phi}\sin\theta\\ =\sqrt{\frac{3}{8\pi}}\bigg(\cos\phi-i\sin\phi\bigg)\sin\theta\\ =\sqrt{\frac{3}{8\pi}}\cos\phi\sin\theta-i\sqrt{\frac{3}{8\pi}}\sin\phi\sin\theta \]

  • \(l=1,m=0\):

\[Y_1^0(\theta,\phi)=\sqrt{\frac{3}{4\pi}}\cos\theta \]

  • \(l=1,m=1\):

\[Y_1^1(\theta,\phi)=-\sqrt{\frac{3}{8\pi}}\cos\phi\sin\theta-i\sqrt{\frac{3}{8\pi}}\sin\phi\sin\theta \]

  • \(l=2,m=\pm2\):

\[Y_2^{\pm2}(\theta,\phi)=\sqrt{\frac{15}{32\pi}}e^{\pm2i\phi}\sin^2\theta \]

  • \(l=1,m=\pm1\):

\[Y_2^{\pm1}(\theta,\phi)=-\mp\sqrt{\frac{15}{8\pi}}e^{\pm i\phi}\sin\theta\cos\theta \]

  • \(l=1,m=0\):

\[Y_2^{0}(\theta,\phi)=\sqrt{\frac{5}{16\pi}}(3\cos^2\theta-1) \]

image-20220326204619789 image-20220326204727815 1
posted @ 2022-03-26 20:49  miccoui  阅读(48)  评论(0编辑  收藏  举报