python绘图练习

1 turtle绘制奥运五环图
import turtle as p
def drawCircle(x,y,c='red'):
    p.pu()# 抬起画笔
    p.goto(x,y) # 绘制圆的起始位置
    p.pd()# 放下画笔
    p.color(c)# 绘制c色圆环
    p.circle(30,360) #绘制圆:半径,角度
p.pensize(3) # 画笔尺寸设置3
drawCircle(0,0,'blue')
drawCircle(60,0,'black')
drawCircle(120,0,'red')
drawCircle(90,-30,'green')
drawCircle(30,-30,'yellow')    

p.done()

2.turtle绘制漫天雪花
import turtle as p
import random

def snow(snow_count):
    p.hideturtle()
    p.speed(500)
    p.pensize(2)
    for i in range(snow_count):
        r = random.random()
        g = random.random()
        b = random.random()
        p.pencolor(r, g, b)
        p.pu()
        p.goto(random.randint(-350, 350), random.randint(1, 270))
        p.pd()
        dens = random.randint(8, 12)
        snowsize = random.randint(10, 14)
        for _ in range(dens):
            p.forward(snowsize)  # 向当前画笔方向移动snowsize像素长度
            p.backward(snowsize)  # 向当前画笔相反方向移动snowsize像素长度
            p.right(360 / dens)  # 顺时针移动360 / dens度

def ground(ground_line_count):
    p.hideturtle()
    p.speed(500)
    for i in range(ground_line_count):
        p.pensize(random.randint(5, 10))
        x = random.randint(-400, 350)
        y = random.randint(-280, -1)
        r = -y / 280
        g = -y / 280
        b = -y / 280
        p.pencolor(r, g, b)
        p.penup()  # 抬起画笔
        p.goto(x, y)  # 让画笔移动到此位置
        p.pendown()  # 放下画笔
        p.forward(random.randint(40, 100))  # 眼当前画笔方向向前移动40~100距离

def main():
    p.setup(800, 600, 0, 0)
    # p.tracer(False)
    p.bgcolor("black")
    snow(30)
    ground(30)
    # p.tracer(True)
    p.mainloop()

main()


3 wordcloud词云图
import hashlib
import pandas as pd
from wordcloud import WordCloud
geo_data=pd.read_excel(r"../data/geo_data.xlsx")
print(geo_data)
# 0     深圳
# 1     深圳
# 2     深圳
# 3     深圳
# 4     深圳
# 5     深圳
# 6     深圳
# 7     广州
# 8     广州
# 9     广州

words = ','.join(x for x in geo_data['city'] if x != []) #筛选出非空列表值
wc = WordCloud(
    background_color="green", #背景颜色"green"绿色
    max_words=100, #显示最大词数
    font_path='./fonts/simhei.ttf', #显示中文
    min_font_size=5,
    max_font_size=100,
    width=500  #图幅宽度
    )
x = wc.generate(words)
x.to_file('../data/geo_data.png')


4 plotly画柱状图和折线图
#柱状图+折线图
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(
    go.Scatter(
        x=[0, 1, 2, 3, 4, 5],
        y=[1.5, 1, 1.3, 0.7, 0.8, 0.9]
    ))
fig.add_trace(
    go.Bar(
        x=[0, 1, 2, 3, 4, 5],
        y=[2, 0.5, 0.7, -1.2, 0.3, 0.4]
    ))
fig.show()


5 seaborn热力图
# 导入库
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# 生成数据集
data = np.random.random((6,6))
np.fill_diagonal(data,np.ones(6))
features = ["prop1","prop2","prop3","prop4","prop5", "prop6"]
data = pd.DataFrame(data, index = features, columns=features)
print(data)
# 绘制热力图
heatmap_plot = sns.heatmap(data, center=0, cmap='gist_rainbow')
plt.show()


6 matplotlib折线图
模块名称:example_utils.py,里面包括三个函数,各自功能如下:
import matplotlib.pyplot as plt

# 创建画图fig和axes
def setup_axes():
    fig, axes = plt.subplots(ncols=3, figsize=(6.5,3))
    for ax in fig.axes:
        ax.set(xticks=[], yticks=[])
    fig.subplots_adjust(wspace=0, left=0, right=0.93)
    return fig, axes
# 图片标题
def title(fig, text, y=0.9):
    fig.suptitle(text, size=14, y=y, weight='semibold', x=0.98, ha='right',
                 bbox=dict(boxstyle='round', fc='floralwhite', ec='#8B7E66',
                           lw=2))
# 为数据添加文本注释
def label(ax, text, y=0):
    ax.annotate(text, xy=(0.5, 0.00), xycoords='axes fraction', ha='center',
                style='italic',
                bbox=dict(boxstyle='round', facecolor='floralwhite',
                          ec='#8B7E66'))


import numpy as np
import matplotlib.pyplot as plt

import example_utils

x = np.linspace(0, 10, 100)

fig, axes = example_utils.setup_axes()
for ax in axes:
    ax.margins(y=0.10)

# 子图1 默认plot多条线,颜色系统分配
for i in range(1, 6):
    axes[0].plot(x, i * x)

# 子图2 展示线的不同linestyle
for i, ls in enumerate(['-', '--', ':', '-.']):
    axes[1].plot(x, np.cos(x) + i, linestyle=ls)

# 子图3 展示线的不同linestyle和marker
for i, (ls, mk) in enumerate(zip(['', '-', ':'], ['o', '^', 's'])):
    axes[2].plot(x, np.cos(x) + i * x, linestyle=ls, marker=mk, markevery=10)

# 设置标题
# example_utils.title(fig, '"ax.plot(x, y, ...)": Lines and/or markers', y=0.95)
# 保存图片
fig.savefig('plot_example.png', facecolor='none')
# 展示图片
plt.show()


7 matplotlib散点图
"""
散点图的基本用法
"""
import numpy as np
import matplotlib.pyplot as plt

import example_utils

# 随机生成数据
np.random.seed(1874)
x, y, z = np.random.normal(0, 1, (3, 100))
t = np.arctan2(y, x)
size = 50 * np.cos(2 * t)**2 + 10

fig, axes = example_utils.setup_axes()

# 子图1
axes[0].scatter(x, y, marker='o',  color='darkblue', facecolor='white', s=80)
example_utils.label(axes[0], 'scatter(x, y)')

# 子图2
axes[1].scatter(x, y, marker='s', color='darkblue', s=size)
example_utils.label(axes[1], 'scatter(x, y, s)')

# 子图3
axes[2].scatter(x, y, s=size, c=z,  cmap='gist_ncar')
example_utils.label(axes[2], 'scatter(x, y, s, c)')

# example_utils.title(fig, '"ax.scatter(...)": Colored/scaled markers',
#                     y=0.95)
fig.savefig('scatter_example.png', facecolor='none')

plt.show()


8 matplotlib柱状图
import numpy as np
import matplotlib.pyplot as plt

import example_utils


def main():
    fig, axes = example_utils.setup_axes()

    basic_bar(axes[0])
    tornado(axes[1])
    general(axes[2])

    # example_utils.title(fig, '"ax.bar(...)": Plot rectangles')
    fig.savefig('bar_example.png', facecolor='none')
    plt.show()

# 子图1
def basic_bar(ax):
    y = [1, 3, 4, 5.5, 3, 2]
    err = [0.2, 1, 2.5, 1, 1, 0.5]
    x = np.arange(len(y))
    ax.bar(x, y, yerr=err, color='lightblue', ecolor='black')
    ax.margins(0.05)
    ax.set_ylim(bottom=0)
    example_utils.label(ax, 'bar(x, y, yerr=e)')

# 子图2
def tornado(ax):
    y = np.arange(8)
    x1 = y + np.random.random(8) + 1
    x2 = y + 3 * np.random.random(8) + 1
    ax.barh(y, x1, color='lightblue')
    ax.barh(y, -x2, color='salmon')
    ax.margins(0.15)
    example_utils.label(ax, 'barh(x, y)')

# 子图3
def general(ax):
    num = 10
    left = np.random.randint(0, 10, num)
    bottom = np.random.randint(0, 10, num)
    width = np.random.random(num) + 0.5
    height = np.random.random(num) + 0.5
    ax.bar(left, height, width, bottom, color='salmon')
    ax.margins(0.15)
    example_utils.label(ax, 'bar(l, h, w, b)')


main()


9 matplotlib等高线图
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.cbook import get_sample_data

import example_utils

z = np.load(get_sample_data('bivariate_normal.npy'))

fig, axes = example_utils.setup_axes()

axes[0].contour(z, cmap='gist_earth')
example_utils.label(axes[0], 'contour')

axes[1].contourf(z, cmap='gist_earth')
example_utils.label(axes[1], 'contourf')

axes[2].contourf(z, cmap='gist_earth')
cont = axes[2].contour(z, colors='black')
axes[2].clabel(cont, fontsize=6)
example_utils.label(axes[2], 'contourf + contour\n + clabel')

# example_utils.title(fig, '"contour, contourf, clabel": Contour/label 2D data',
#                     y=0.96)
fig.savefig('contour_example.png', facecolor='none')

plt.show()


10 imshow图
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.cbook import get_sample_data
from mpl_toolkits import axes_grid1

import example_utils


def main():
    fig, axes = setup_axes()
    plot(axes, *load_data())
    # example_utils.title(fig, '"ax.imshow(data, ...)": Colormapped or RGB arrays')
    fig.savefig('imshow_example.png', facecolor='none')
    plt.show()


def plot(axes, img_data, scalar_data, ny):

    # 默认线性插值
    axes[0].imshow(scalar_data, cmap='gist_earth', extent=[0, ny, ny, 0])

    # 最近邻插值
    axes[1].imshow(scalar_data, cmap='gist_earth', interpolation='nearest',
                   extent=[0, ny, ny, 0])

    # 展示RGB/RGBA数据
    axes[2].imshow(img_data)


def load_data():
    img_data = plt.imread(get_sample_data('5.png'))
    ny, nx, nbands = img_data.shape
    scalar_data = np.load(get_sample_data('bivariate_normal.npy'))
    return img_data, scalar_data, ny


def setup_axes():
    fig = plt.figure(figsize=(6, 3))
    axes = axes_grid1.ImageGrid(fig, [0, 0, .93, 1], (1, 3), axes_pad=0)

    for ax in axes:
        ax.set(xticks=[], yticks=[])
    return fig, axes


main()


11 pyecharts绘制仪表盘
from pyecharts import charts

# 仪表盘
gauge = charts.Gauge()
gauge.add('Python小例子', [('Python机器学习', 30), ('Python基础', 70.),
                        ('Python正则', 90)])
gauge.render(path="./data/仪表盘.html")
print('ok')


12 pyecharts漏斗图
from pyecharts import options as opts
from pyecharts.charts import Funnel, Page
from random import randint

def funnel_base() -> Funnel:
  c = (
    Funnel()
    .add("豪车", [list(z) for z in zip(['宝马', '法拉利', '奔驰', '奥迪', '大众', '丰田', '特斯拉'],
                 [randint(1, 20) for _ in range(7)])])
    .set_global_opts(title_opts=opts.TitleOpts(title="豪车漏斗图"))
  )
  return c
funnel_base().render('./img/car_fnnel.html')


13 pyecharts日历图
import datetime
import random
from pyecharts import options as opts
from pyecharts.charts import Calendar

def calendar_interval_1() -> Calendar:
    begin = datetime.date(2019, 1, 1)
    end = datetime.date(2019, 12, 27)
    data = [
        [str(begin + datetime.timedelta(days=i)), random.randint(1000, 25000)]
        for i in range(0, (end - begin).days + 1, 2)  # 隔天统计
    ]
    calendar = (
      Calendar(init_opts=opts.InitOpts(width="1200px")).add(
            "", data, calendar_opts=opts.CalendarOpts(range_="2019"))
        .set_global_opts(
            title_opts=opts.TitleOpts(title="Calendar-2019年步数统计"),
            visualmap_opts=opts.VisualMapOpts(
                max_=25000,
                min_=1000,
                orient="horizontal",
                is_piecewise=True,
                pos_top="230px",
                pos_left="100px",
            ),
        )
    )
    return calendar

calendar_interval_1().render('./img/calendar.html')


14 pyecharts绘制graph图
import json
import os
from pyecharts import options as opts
from pyecharts.charts import Graph, Page

def graph_base() -> Graph:
    nodes = [
        {"name": "cus1", "symbolSize": 10},
        {"name": "cus2", "symbolSize": 30},
        {"name": "cus3", "symbolSize": 20}
    ]
    links = []
    for i in nodes:
        if i.get('name') == 'cus1':
            continue
        for j in nodes:
            if j.get('name') == 'cus1':
                continue
            links.append({"source": i.get("name"), "target": j.get("name")})
    c = (
        Graph()
        .add("", nodes, links, repulsion=8000)
        .set_global_opts(title_opts=opts.TitleOpts(title="customer-influence"))
    )
    return c


15 pyecharts水球图
from pyecharts import options as opts
from pyecharts.charts import Liquid, Page
from pyecharts.globals import SymbolType

def liquid() -> Liquid:
    c = (
        Liquid()
        .add("lq", [0.67, 0.30, 0.15])
        .set_global_opts(title_opts=opts.TitleOpts(title="Liquid"))
    )
    return c

liquid().render('./img/liquid.html')


16 pyecharts饼图
from pyecharts import options as opts
from pyecharts.charts import Pie
from random import randint

def pie_base() -> Pie:
    c = (
        Pie()
        .add("", [list(z) for z in zip(['宝马', '法拉利', '奔驰', '奥迪', '大众', '丰田', '特斯拉'],
                                       [randint(1, 20) for _ in range(7)])])
        .set_global_opts(title_opts=opts.TitleOpts(title="Pie-基本示例"))
        .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    )
    return c

pie_base().render('./img/pie_pyecharts.html')


17 pyecharts极坐标图
import random
from pyecharts import options as opts
from pyecharts.charts import Page, Polar

def polar_scatter0() -> Polar:
    data = [(alpha, random.randint(1, 100)) for alpha in range(101)] # r = random.randint(1, 100)
    print(data)
    c = (
        Polar()
        .add("", data, type_="bar", label_opts=opts.LabelOpts(is_show=False))
        .set_global_opts(title_opts=opts.TitleOpts(title="Polar"))
    )
    return c

polar_scatter0().render('./img/polar.html')


18 pyecharts词云图
from pyecharts import options as opts
from pyecharts.charts import Page, WordCloud
from pyecharts.globals import SymbolType

words = [
    ("Python", 100),
    ("C++", 80),
    ("Java", 95),
    ("R", 50),
    ("JavaScript", 79),
    ("C", 65)
]

def wordcloud() -> WordCloud:
    c = (
        WordCloud()
        # word_size_range: 单词字体大小范围
        .add("", words, word_size_range=[20, 100], shape='cardioid')
        .set_global_opts(title_opts=opts.TitleOpts(title="WordCloud"))
    )
    return c

wordcloud().render('./img/wordcloud.html')


19 pyecharts系列柱状图
from pyecharts import options as opts
from pyecharts.charts import Bar
from random import randint

def bar_series() -> Bar:
    c = (
        Bar()
        .add_xaxis(['宝马', '法拉利', '奔驰', '奥迪', '大众', '丰田', '特斯拉'])
        .add_yaxis("销量", [randint(1, 20) for _ in range(7)])
        .add_yaxis("产量", [randint(1, 20) for _ in range(7)])
        .set_global_opts(title_opts=opts.TitleOpts(title="Bar的主标题", subtitle="Bar的副标题"))
    )
    return c

bar_series().render('./img/bar_series.html')


20 pyecharts热力图
import random
from pyecharts import options as opts
from pyecharts.charts import HeatMap

def heatmap_car() -> HeatMap:
    x = ['宝马', '法拉利', '奔驰', '奥迪', '大众', '丰田', '特斯拉']
    y = ['中国','日本','南非','澳大利亚','阿根廷','阿尔及利亚','法国','意大利','加拿大']
    value = [[i, j, random.randint(0, 100)]
             for i in range(len(x)) for j in range(len(y))]
    c = (
        HeatMap()
        .add_xaxis(x)
        .add_yaxis("销量", y, value)
        .set_global_opts(
            title_opts=opts.TitleOpts(title="HeatMap"),
            visualmap_opts=opts.VisualMapOpts(),
        )
    )
    return c

heatmap_car().render('./img/heatmap_pyecharts.html')


21 matplotlib绘制动画
matplotlib是python中最经典的绘图包,里面animation模块能绘制动画。

首先导入小例子使用的模块:

from matplotlib import pyplot as plt
from matplotlib import animation
from random import randint, random
生成数据,frames_count是帧的个数,data_count每个帧的柱子个数

class Data:
    data_count = 32
    frames_count = 2

    def __init__(self, value):
        self.value = value
        self.color = (0.5, random(), random()) #rgb

    # 造数据
    @classmethod
    def create(cls):
        return [[Data(randint(1, cls.data_count)) for _ in range(cls.data_count)]
                for frame_i in range(cls.frames_count)]
绘制动画:animation.FuncAnimation函数的回调函数的参数fi表示第几帧,注意要调用axs.cla()清除上一帧。

def draw_chart():
    fig = plt.figure(1, figsize=(16, 9))
    axs = fig.add_subplot(111)
    axs.set_xticks([])
    axs.set_yticks([])

    # 生成数据
    frames = Data.create()

    def animate(fi):
        axs.cla()  # clear last frame
        axs.set_xticks([])
        axs.set_yticks([])
        return axs.bar(list(range(Data.data_count)),        # X
                       [d.value for d in frames[fi]],       # Y
                       1,                                   # width
                       color=[d.color for d in frames[fi]]  # color
                       )
    # 动画展示
    anim = animation.FuncAnimation(fig, animate, frames=len(frames))
    plt.show()


draw_chart()

22 pyecharts绘图属性设置方法
这是pyecharts中一般的绘图步骤:

from pyecharts.faker import Faker
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.commons.utils import JsCode

def bar_base() -> Bar:
    c = (
        Bar()
        .add_xaxis(Faker.choose())
        .add_yaxis("商家A", Faker.values())
        .set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题"))
    )
    return c

bar_base().render('./bar.html')
那么,如何设置y轴显示在右侧,添加一行代码:

.set_global_opts(yaxis_opts=opts.AxisOpts(position='right'))
也就是:

c = (
        Bar()
        .add_xaxis(Faker.choose())
        .add_yaxis("商家A", Faker.values())
        .set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题"))
        .set_global_opts(yaxis_opts=opts.AxisOpts(position='right'))
    )
如何锁定这个属性,首先应该在set_global_opts函数的参数中找,它一共有以下11个设置参数,它们位于模块charts.py:

title_opts: types.Title = opts.TitleOpts(),
legend_opts: types.Legend = opts.LegendOpts(),
tooltip_opts: types.Tooltip = None,
toolbox_opts: types.Toolbox = None,
brush_opts: types.Brush = None,
xaxis_opts: types.Axis = None,
yaxis_opts: types.Axis = None,
visualmap_opts: types.VisualMap = None,
datazoom_opts: types.DataZoom = None,
graphic_opts: types.Graphic = None,
axispointer_opts: types.AxisPointer = None,
因为是设置y轴显示在右侧,自然想到设置参数yaxis_opts,因为其类型为types.Axis,所以再进入types.py,同时定位到Axis:

Axis = Union[opts.AxisOpts, dict, None]
Union是pyecharts中可容纳多个类型的并集列表,也就是Axis可能为opts.AxisOpt, dict, 或None三种类型。查看第一个opts.AxisOpt类,它共定义以下25个参数:

type_: Optional[str] = None,
name: Optional[str] = None,
is_show: bool = True,
is_scale: bool = False,
is_inverse: bool = False,
name_location: str = "end",
name_gap: Numeric = 15,
name_rotate: Optional[Numeric] = None,
interval: Optional[Numeric] = None,
grid_index: Numeric = 0,
position: Optional[str] = None,
offset: Numeric = 0,
split_number: Numeric = 5,
boundary_gap: Union[str, bool, None] = None,
min_: Union[Numeric, str, None] = None,
max_: Union[Numeric, str, None] = None,
min_interval: Numeric = 0,
max_interval: Optional[Numeric] = None,
axisline_opts: Union[AxisLineOpts, dict, None] = None,
axistick_opts: Union[AxisTickOpts, dict, None] = None,
axislabel_opts: Union[LabelOpts, dict, None] = None,
axispointer_opts: Union[AxisPointerOpts, dict, None] = None,
name_textstyle_opts: Union[TextStyleOpts, dict, None] = None,
splitarea_opts: Union[SplitAreaOpts, dict, None] = None,
splitline_opts: Union[SplitLineOpts, dict] = SplitLineOpts(),
观察后尝试参数position,结合官档:https://pyecharts.org/#/zh-cn/global_options?id=axisopts%ef%bc%9a%e5%9d%90%e6%a0%87%e8%bd%b4%e9%85%8d%e7%bd%ae%e9%a1%b9,介绍x轴设置position时有bottom, top, 所以y轴设置很可能就是left,right.



23 pyecharts绘图属性设置方法(下)
1)柱状图显示效果动画对应控制代码:

animation_opts=opts.AnimationOpts(
                    animation_delay=500, animation_easing="cubicOut"
                )
2)柱状图显示主题对应控制代码:

theme=ThemeType.MACARONS
3)添加x轴对应的控制代码:

add_xaxis( ["草莓", "芒果", "葡萄", "雪梨", "西瓜", "柠檬", "车厘子"]
4)添加y轴对应的控制代码:

add_yaxis("A", Faker.values(),
5)修改柱间距对应的控制代码:

category_gap="50%"
6)A系列柱子是否显示对应的控制代码:

is_selected=True
7)A系列柱子颜色渐变对应的控制代码:

itemstyle_opts={
            "normal": {
                "color": JsCode("""new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                    offset: 0,
                    color: 'rgba(0, 244, 255, 1)'
                }, {
                    offset: 1,
                    color: 'rgba(0, 77, 167, 1)'
                }], false)"""),
                "barBorderRadius": [6, 6, 6, 6],
                "shadowColor": 'rgb(0, 160, 221)',
            }}
8)A系列柱子最大和最小值标记点对应的控制代码:

markpoint_opts=opts.MarkPointOpts(
                data=[
                    opts.MarkPointItem(type_="max", name="最大值"),
                    opts.MarkPointItem(type_="min", name="最小值"),
                ]
            )
9)A系列柱子最大和最小值标记线对应的控制代码:

markline_opts=opts.MarkLineOpts(
                data=[
                    opts.MarkLineItem(type_="min", name="最小值"),
                    opts.MarkLineItem(type_="max", name="最大值")
                ]
            )
10)柱状图标题对应的控制代码:

title_opts=opts.TitleOpts(title="Bar-参数使用例子"
11)柱状图非常有用的toolbox显示对应的控制代码:

toolbox_opts=opts.ToolboxOpts()
12)Y轴显示在右侧对应的控制代码:

yaxis_opts=opts.AxisOpts(position="right")
13)Y轴名称对应的控制代码:

yaxis_opts=opts.AxisOpts(,name="Y轴")
14)数据轴区域放大缩小设置对应的控制代码:

datazoom_opts=opts.DataZoomOpts()
完整代码

def bar_border_radius():
    c = (
        Bar(init_opts=opts.InitOpts(
                animation_opts=opts.AnimationOpts(
                    animation_delay=500, animation_easing="cubicOut"
                ),
                theme=ThemeType.MACARONS))
        .add_xaxis( ["草莓", "芒果", "葡萄", "雪梨", "西瓜", "柠檬", "车厘子"])
        .add_yaxis("A", Faker.values(),category_gap="50%",markpoint_opts=opts.MarkPointOpts(),is_selected=True)
        .set_series_opts(itemstyle_opts={
            "normal": {
                "color": JsCode("""new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                    offset: 0,
                    color: 'rgba(0, 244, 255, 1)'
                }, {
                    offset: 1,
                    color: 'rgba(0, 77, 167, 1)'
                }], false)"""),
                "barBorderRadius": [6, 6, 6, 6],
                "shadowColor": 'rgb(0, 160, 221)',
            }}, markpoint_opts=opts.MarkPointOpts(
                data=[
                    opts.MarkPointItem(type_="max", name="最大值"),
                    opts.MarkPointItem(type_="min", name="最小值"),
                ]
            ),markline_opts=opts.MarkLineOpts(
                data=[
                    opts.MarkLineItem(type_="min", name="最小值"),
                    opts.MarkLineItem(type_="max", name="最大值")
                ]
            ))
        .set_global_opts(title_opts=opts.TitleOpts(title="Bar-参数使用例子"), toolbox_opts=opts.ToolboxOpts(),yaxis_opts=opts.AxisOpts(position="right",name="Y轴"),datazoom_opts=opts.DataZoomOpts(),)
        
    )

    return c

bar_border_radius().render()


24 1 分钟学会画 pairplot 图
使用 seaborn 绘制 sepal_length, petal_length 两个特征间的关系矩阵:
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import tree

sns.set(style="ticks")

df02 = df.iloc[:,[0,2,4]] # 选择一对特征
sns.pairplot(df02)
plt.show()

设置颜色多显:

sns.pairplot(df02, hue="species")
plt.show()

绘制所有特征散点矩阵:

sns.pairplot(df, hue="species")
plt.show()

 

posted on 2020-04-01 20:00  不要挡着我晒太阳  阅读(814)  评论(0编辑  收藏  举报

导航