第 2 章 设计模式七大原则
2.1 设计模式的目的
编写软件过程中,程序员面临着来自耦合性,内聚性以及可维护性,可扩展性,重用性,灵活性等多方面的挑战,设计模式是为了让程序(软件)具有更好:
- 代码重用性 (即:相同功能的代码,不用多次编写)
- 可读性 (即:编程规范性,便于其他程序员的阅读和理解)
- 可扩展性 (即:当需要增加新的功能时,非常的方便,称为可维护)
- 可靠性 (即:当我们增加新的功能后,对原来的功能没有影响)
- 使程序呈现高内聚,低耦合的特性
设计模式包含了面向对象的精髓,“懂了设计模式,你就懂了面向对象分析和设计(OOA/D)的精要”
2.2 设计模式七大原则
设计模式原则,其实就是程序员在编程时,应当遵守的原则,也是各种设计模式的基础(即:设计模式为什么这样设计的依据)。
设计模式常用的七大原则有:
- 单一职责原则
- 接口隔离原则
- 依赖倒转(倒置)原则
- 里氏替换原则
- 开闭原则
- 迪米特法则
- 合成复用原则
2.3 单一职责原则
2.3.1 基本介绍
对类来说的,即一个类应该只负责一项职责 。如类 A 负责两个不同职责:职责 1,职责 2。当职责 1 需求变更而改变 A 时,可能造成职责 2 执行错误,所以需要将类 A 的粒度分解为 A1,A2。
2.3.2 应用实例
交通工具案例
方案 1
package com.atguigu.principle.singleresponsibility;
public class SingleResponsibility1 {
public static void main(String[] args) {
Vehicle vehicle = new Vehicle();
vehicle.run("摩托车");
vehicle.run("汽车");
vehicle.run("飞机"); // (有误)飞机 在公路上运行....
}
}
class Vehicle {
public void run(String vehicle) {
System.out.println(vehicle + " 在公路上运行....");
}
}
-
在方式 1 的 run 方法中,违反了单一职责原则
-
解决的方案非常的简单,根据交通工具运行方法不同,分解成不同类即可
方案 2
package com.atguigu.principle.singleresponsibility;
public class SingleResponsibility2 {
public static void main(String[] args) {
RoadVehicle roadVehicle = new RoadVehicle();
roadVehicle.run("摩托车");
roadVehicle.run("汽车");
AirVehicle airVehicle = new AirVehicle();
airVehicle.run("飞机");
}
}
class RoadVehicle {
public void run(String vehicle) {
System.out.println(vehicle + "公路运行");
}
}
class AirVehicle {
public void run(String vehicle) {
System.out.println(vehicle + "天空运行");
}
}
class WaterVehicle {
public void run(String vehicle) {
System.out.println(vehicle + "水中运行");
}
}
-
遵守单一职责原则
-
但是这样做的改动很大,即将类分解,同时修改客户端
-
改进:直接修改 Vehicle 类,改动的代码会比较少 => 方案 3
方案 3
package com.atguigu.principle.singleresponsibility;
public class SingleResponsibility3 {
public static void main(String[] args) {
// TODO Auto-generated method stub
Vehicle2 vehicle2 = new Vehicle2();
vehicle2.run("汽车");
vehicle2.runWater("轮船");
vehicle2.runAir("飞机");
}
}
class Vehicle2 {
public void run(String vehicle) {
System.out.println(vehicle + " 在公路上运行....");
}
public void runAir(String vehicle) {
System.out.println(vehicle + " 在天空上运行....");
}
public void runWater(String vehicle) {
System.out.println(vehicle + " 在水中行....");
}
}
-
这种修改方法没有对原来的类做大的修改,只是增加方法。
-
这里虽然没有在类这个级别上遵守单一职责原则,但是在方法级别上,仍然是遵守单一职责。
2.3.3 单一职责原则注意事项和细节
-
降低类的复杂度,一个类只负责一项职责。
-
提高类的可读性,可维护性。
-
降低变更引起的风险。
-
通常情况下,应当遵守单一职责原则,只有逻辑足够简单,才可以在代码级违反单一职责原则;只有类中方法数量足够少,可以在方法级别保持单一职责原则
2.4 接口隔离原则(Interface Segregation Principle)
2.4.1 基本介绍
客户端不应该依赖它不需要的接口,即一个类对另一个类的依赖应该建立在最小的接口上。
2.4.2 应用实例
类图:
接口隔离原则类图实现
package com.atguigu.principle.segregation;
public class Segregation1 {
public static void main(String[] args) { }
}
//接口
interface Interface1 {void operation1(); void operation2(); void operation3(); void operation4(); void operation5();
}
class B implements Interface1 {
@Override public void operation1() { System.out.println("B 实现了 operation1"); } @Override public void operation2() { System.out.println("B 实现了 operation2"); } @Override public void operation3() { System.out.println("B 实现了 operation3"); } @Override public void operation4() { System.out.println("B 实现了 operation4"); } @Override public void operation5() { System.out.println("B 实现了 operation5"); }
}
class D implements Interface1 {
@Override public void operation1() { System.out.println("D 实现了 operation1"); } @Override public void operation2() { System.out.println("D 实现了 operation2"); } @Override public void operation3() { System.out.println("D 实现了 operation3"); } @Override public void operation4() { System.out.println("D 实现了 operation4"); } @Override public void operation5() { System.out.println("D 实现了 operation5"); }
}
class A { //A 类通过接口Interface1 依赖(使用) B类,但是只会用到1,2,3方法
public void depend1(Interface1 i) { i.operation1(); } public void depend2(Interface1 i) { i.operation2(); } public void depend3(Interface1 i) { i.operation3(); }
}
class C { //C 类通过接口Interface1 依赖(使用) D类,但是只会用到1,4,5方法
public void depend1(Interface1 i) { i.operation1(); } public void depend4(Interface1 i) { i.operation4(); } public void depend5(Interface1 i) { i.operation5(); }
}
问题:类 A 通过接口 Interface1 依赖类 B,类 C 通过接口 Interface1 依赖类 D,如果接口 Interface1 对于类 A 和类 C 来说不是最小接口,那么类 B 和类 D 必须去实现他们不需要的方法。
2.4.3 使用接口隔离原则改进
上述问题解决办法:将接口 Interface1 拆分为独立的几个接口,类 A 和类 C 分别与他们需要的接口建立依赖关系。即采用接口隔离原则。
使用接口隔离原则改进代码
package com.atguigu.principle.segregation.improve;
public class Segregation1 {
public static void main(String[] args) { A a = new A(); a.depend1(new B()); // A类通过接口去依赖B类 a.depend2(new B()); a.depend3(new B()); C c = new C(); c.depend1(new D()); // C类通过接口去依赖(使用)D类 c.depend4(new D()); c.depend5(new D()); }
}
// 接口1
interface Interface1 {void operation1();
}
// 接口2
interface Interface2 {void operation2(); void operation3();
}
// 接口3
interface Interface3 {void operation4(); void operation5();
}
class B implements Interface1, Interface2 {
@Override public void operation1() { System.out.println("B 实现了 operation1"); } @Override public void operation2() { System.out.println("B 实现了 operation2"); } @Override public void operation3() { System.out.println("B 实现了 operation3"); }
}
class D implements Interface1, Interface3 {
@Override public void operation1() { System.out.println("D 实现了 operation1"); } @Override public void operation4() { System.out.println("D 实现了 operation4"); } @Override public void operation5() { System.out.println("D 实现了 operation5"); }
}
class A { // A 类通过接口Interface1,Interface2 依赖(使用) B类,但是只会用到1,2,3方法
public void depend1(Interface1 i) { i.operation1(); } public void depend2(Interface2 i) { i.operation2(); } public void depend3(Interface2 i) { i.operation3(); }
}
class C { // C 类通过接口Interface1,Interface3 依赖(使用) D类,但是只会用到1,4,5方法
public void depend1(Interface1 i) { i.operation1(); } public void depend4(Interface3 i) { i.operation4(); } public void depend5(Interface3 i) { i.operation5(); }
}
2.5 依赖倒转原则
2.5.1 基本介绍
依赖倒转原则(Dependence Inversion Principle)是指:
-
高层模块不应该依赖低层模块,二者都应该依赖其抽象。
-
抽象不应该依赖细节,细节应该依赖抽象。
-
依赖倒转(倒置)的中心思想是面向接口编程。
-
依赖倒转原则是基于这样的设计理念:相对于细节的多变性,抽象的东西要稳定的多。以抽象为基础搭建的架构比以细节为基础的架构要稳定的多。在java中,抽象指的是接口或抽象类,细节就是具体的实现类。
-
使用接口或抽象类的目的是制定好规范,而不涉及任何具体的操作,把展现细节的任务交给他们的实现类去完成。
2.5.2 应用实例
请编程完成 Person 接收消息的功能
实现方案 1 + 分析说明
实现方案 1
package com.atguigu.principle.inversion;
public class DependecyInversion {
public static void main(String[] args) {
Person person = new Person();
person.receive(new Email());
}
}
class Email {
public String getInfo() {
return "电子邮件信息: hello,world";
}
}
class Person {
public void receive(Email email ) {
System.out.println(email.getInfo());
}
}
完成Person接收消息的功能方式 1 分析
-
简单,比较容易想到
-
如果我们获取的对象是【微信,短信等等】,则新增类,同时Perons也要增加相应的接收方法。
-
解决思路:引入一个抽象的接口 IReceiver, 表示接收者, 这样 Person 类与接口 IReceiver 发生依赖。因为 Email、WeiXin 等属于接收的范围,他们各自实现 IReceiver 接口就 ok,这样我们就符合依赖倒转原则。
实现方案 2 + 分析说明
实现方案 2
package com.atguigu.principle.inversion.improve;
public class DependecyInversion {
public static void main(String[] args) {
//客户端无需改变
Person person = new Person();
person.receive(new Email());
person.receive(new WeiXin());
}
}
//定义接口
interface IReceiver {
public String getInfo();
}
class Email implements IReceiver {
@Override
public String getInfo() {
return "电子邮件信息: hello,world";
}
}
//增加微信
class WeiXin implements IReceiver {
@Override
public String getInfo() {
return "微信信息: hello,ok";
}
}
//方式2
class Person {
//这里是对接口的依赖
public void receive(IReceiver receiver ) {
System.out.println(receiver.getInfo());
}
}
2.5.3 依赖关系传递的三种方式和应用案例
1、接口传递
应用案例代码
接口传递应用案例代码
package com.atguigu.principle.inversion.improve;
public class DependencyPass {
public static void main(String[] args) {
ChangHong changHong = new ChangHong();
OpenAndClose openAndClose = new OpenAndClose();
openAndClose.open(changHong);
}
}
// 方式1: 通过接口传递实现依赖
// 开关的接口
interface IOpenAndClose {
public void open(ITV tv); //抽象方法,接收接口
}
interface ITV { //ITV接口
public void play();
}
class ChangHong implements ITV {
@Override
public void play() {
// TODO Auto-generated method stub
System.out.println("长虹电视机,打开");
}
}
// 实现接口
class OpenAndClose implements IOpenAndClose{
@Override
public void open(ITV tv){
tv.play();
}
}
2、构造方法传递
应用案例代码
构造方法传递应用案例代码
package com.atguigu.principle.inversion.improve;
public class DependencyPass {
public static void main(String[] args) { ChangHong changHong = new ChangHong(); //通过构造器进行依赖传递 OpenAndClose openAndClose = new OpenAndClose(changHong); openAndClose.open(); }
}
// 方式2: 通过构造方法依赖传递
interface IOpenAndClose {public void open(); //抽象方法
}
interface ITV { //ITV接口
public void play();
}
class OpenAndClose implements IOpenAndClose{
public ITV tv; //成员 public OpenAndClose(ITV tv){ //构造器 this.tv = tv; } @Override public void open(){ this.tv.play(); }
}
class ChangHong implements ITV {
@Override public void play() { System.out.println("长虹电视机,打开"); }
}
3、setter 方式传递
应用案例代码
setter 方式传递应用案例代码
package com.atguigu.principle.inversion.improve;
public class DependencyPass {
public static void main(String[] args) { ChangHong changHong = new ChangHong(); //通过setter方法进行依赖传递 OpenAndClose openAndClose = new OpenAndClose(); openAndClose.setTv(changHong); openAndClose.open(); }
}
interface IOpenAndClose {
public void open(); // 抽象方法 public void setTv(ITV tv);
}
interface ITV { // ITV接口
public void play();
}
class OpenAndClose implements IOpenAndClose {
private ITV tv; @Override public void setTv(ITV tv) { this.tv = tv; } @Override public void open() { this.tv.play(); }
}
class ChangHong implements ITV {
@Override public void play() { System.out.println("长虹电视机,打开"); }
}
2.5.4 依赖倒转原则的注意事项和细节
-
低层模块尽量都要有抽象类或接口,或者两者都有,程序稳定性更好。
-
变量的声明类型尽量是抽象类或接口,这样变量引用和实际对象间,就存在一个缓冲层,利于程序扩展和优化。
-
继承时遵循里氏替换原则。
2.6 里氏替换原则
2.6.1 OO 中的继承性的思考和说明
1、继承包含这样一层含义:父类中凡是已经实现好的方法,实际上是在设定规范和契约,虽然它不强制要求所有的子类必须遵循这些契约,但是如果子类对这些已经实现的方法任意修改,就会对整个继承体系造成破坏。
2、继承在给程序设计带来便利的同时,也带来了弊端。比如使用继承会给程序带来侵入性,程序的可移植性降低,增加对象间的耦合性,如果一个类被其他的类所继承,则当这个类需要修改时,必须考虑到所有的子类,并且父类修改后,所有涉及到子类的功能都有可能产生故障。
3、问题提出:在编程中,如何正确的使用继承? => 里氏替换原则
2.6.2 基本介绍
1、里氏替换原则(Liskov SubstitutionPrinciple)在 1988 年,由麻省理工学院的 Liskov 女士提出的。
2、如果对每个类型为 T1 的对象 o1,都有类型为 T2 的对象 o2,使得以 T1 定义的所有程序 P 在所有的对象 o1 都代换成 o2 时,程序 P 的行为没有发生变化,那么类型 T2 是类型 T1 的子类型。换句话说,所有引用基类的地方必须能透明地使用其子类的对象。
3、在使用继承时,遵循里氏替换原则,在子类中尽量不要重写父类的方法。
4、里氏替换原则告诉我们,继承实际上让两个类耦合性增强了,在适当的情况下,可以通过聚合,组合,依赖 来解决问题。
2.6.3 一个程序引出的问题和思考
2.6.4 解决方法
1、原来运行正常的相减功能发生了错误。原因就是类 B 无意中重写了父类的方法,造成原有功能出现错误。在实际编程中,常常会通过重写父类的方法完成新的功能,这样写起来虽然简单,但整个继承体系的复用性会比较差。特别是运行多态比较频繁的时候。
2、通用的做法是:原来的父类和子类都继承一个更通俗的基类,原有的继承关系去掉,采用依赖,聚合,组合等关系代替。
解决方法
package com.atguigu.principle.liskov.improve;
public class Liskov {
public static void main(String[] args) { A a = new A(); System.out.println("11-3=" + a.func1(11, 3)); System.out.println("1-8=" + a.func1(1, 8)); System.out.println("-----------------------"); B b = new B(); //因为B类不再继承A类,因此调用者,不会再认为func1是求减法 //调用完成的功能就会很明确 System.out.println("11+3=" + b.func1(11, 3));//这里本意是求出11+3 System.out.println("1+8=" + b.func1(1, 8));// 1+8 System.out.println("11+3+9=" + b.func2(11, 3)); //使用组合仍然可以使用到A类相关方法 System.out.println("11-3=" + b.func3(11, 3));// 这里本意是求出11-3 }
}
//创建一个更加基础的基类
class Base {//把更加基础的方法和成员写到Base类
}
// A类
class A extends Base {// 返回两个数的差 public int func1(int num1, int num2) { return num1 - num2; }
}
// B类继承了A
// 增加了一个新功能:完成两个数相加,然后和9求和
class B extends Base {//如果B需要使用A类的方法,使用组合关系 private A a = new A(); //这里,重写了A类的方法, 可能是无意识 public int func1(int a, int b) { return a + b; } public int func2(int a, int b) { return func1(a, b) + 9; } //我们仍然想使用A的方法 public int func3(int a, int b) { return this.a.func1(a, b); }
}
2.7 开闭原则
2.7.1 基本介绍
1、开闭原则(Open Closed Principle)是编程中最基础、最重要的设计原则。
2、一个软件实体如类,模块和函数应该对扩展开放(对提供方),对修改关闭(对使用方)。用抽象构建框架,用实现扩展细节。
3、当软件需要变化时,尽量通过扩展软件实体的行为来实现变化,而不是通过修改已有的代码来实现变化。即增加新功能,尽量不修改代码,而是增加代码。
4、编程中遵循其它原则,以及使用设计模式的目的就是遵循开闭原则。
2.7.2 看下面一段代码
看一个画图形的功能。
类图设计,如下:
画图形的功能代码实现
package com.atguigu.principle.ocp;
public class Ocp {
public static void main(String[] args) { //使用看看存在的问题 GraphicEditor graphicEditor = new GraphicEditor(); graphicEditor.drawShape(new Rectangle()); graphicEditor.drawShape(new Circle()); }
}
//这是一个用于绘图的类 [使用方]
class GraphicEditor {//接收Shape对象,然后根据type,来绘制不同的图形 public void drawShape(Shape s) { if (s.m_type == 1) drawRectangle(s); else if (s.m_type == 2) drawCircle(s); } //绘制矩形 public void drawRectangle(Shape r) { System.out.println(" 绘制矩形 "); } //绘制圆形 public void drawCircle(Shape r) { System.out.println(" 绘制圆形 "); }
}
//Shape类,基类
class Shape {int m_type;
}
class Rectangle extends Shape {
Rectangle() { super.m_type = 1; }
}
class Circle extends Shape {
Circle() { super.m_type = 2; }
}
2.7.3 上述实现的优缺点
1、优点是简单易操作。
2、缺点是违反了设计模式的ocp原则,即对扩展开放(提供方),对修改关闭(使用方)。即当给类增加新功能的时候,尽量不修改代码,或者尽可能少修改代码。
3、比如要新增加一个图形种类 三角形,需要做如下修改,修改的地方较多。
代码演示
新增三角形
public class Ocp {
public static void main(String[] args) {
//使用看看存在的问题
GraphicEditor graphicEditor = new GraphicEditor();
graphicEditor.drawShape(new Rectangle());
graphicEditor.drawShape(new Circle());
graphicEditor.drawShape(new Triangle());
}
}
//这是一个用于绘图的类 [🍓 使用方]
class GraphicEditor {
//接收Shape对象,然后根据type,来绘制不同的图形
public void drawShape(Shape s) {
if (s.m_type == 1){
drawRectangle(s);
}
else if (s.m_type == 2){
drawCircle(s);
}
else if (s.m_type == 3){
drawTriangle(s);
}
}
//绘制矩形
public void drawRectangle(Shape r) {
System.out.println(" 绘制矩形 ");
}
//绘制圆形
public void drawCircle(Shape r) {
System.out.println(" 绘制圆形 ");
}
//绘制三角形
public void drawTriangle(Shape r) {
System.out.println(" 绘制三角形 ");
}
}
//Shape类,基类
class Shape {
int m_type;
}
class Rectangle extends Shape {
Rectangle() {
super.m_type = 1;
}
}
class Circle extends Shape {
Circle() {
super.m_type = 2;
}
}
//新增画三角形
class Triangle extends Shape {
Triangle() {
super.m_type = 3;
}
}
使用方于绘图的类 GraphicEditor 需要修改
2.7.4 改进的思路分析
思路:把创建Shape类做成抽象类,并提供一个抽象的draw方法,让子类去实现即可,这样当有新的图形种类时,只需要让新的图形类继承Shape,并实现draw方法即可,使用方的代码就不需要修改 -> 满足了开闭原则。
改进代码
package com.atguigu.principle.ocp.improve;
public class Ocp {
public static void main(String[] args) { //使用看看存在的问题 GraphicEditor graphicEditor = new GraphicEditor(); graphicEditor.drawShape(new Rectangle()); graphicEditor.drawShape(new Circle()); graphicEditor.drawShape(new Triangle()); graphicEditor.drawShape(new OtherGraphic()); }
}
//这是一个用于绘图的类 [使用方]
class GraphicEditor {//接收Shape对象,调用draw方法 public void drawShape(Shape s) { s.draw(); }
}
//Shape类,基类
abstract class Shape {int m_type; public abstract void draw();//抽象方法
}
class Rectangle extends Shape {
Rectangle() { super.m_type = 1; } @Override public void draw() { // TODO Auto-generated method stub System.out.println(" 绘制矩形 "); }
}
class Circle extends Shape {
Circle() { super.m_type = 2; } @Override public void draw() { // TODO Auto-generated method stub System.out.println(" 绘制圆形 "); }
}
//新增画三角形
class Triangle extends Shape {Triangle() { super.m_type = 3; } @Override public void draw() { // TODO Auto-generated method stub System.out.println(" 绘制三角形 "); }
}
//新增一个图形
class OtherGraphic extends Shape {OtherGraphic() { super.m_type = 4; } @Override public void draw() { // TODO Auto-generated method stub System.out.println(" 绘制其它图形 "); }
}
2.8 迪米特法则
2.8.1 基本介绍
1、一个对象应该对其他对象保持最少的了解。
2、类与类关系越密切,耦合度越大。
3、迪米特法则(Demeter Principle)又叫最少知道原则,即一个类对自己依赖的类知道的越少越好。也就是说,对于被依赖的类不管多么复杂,都尽量将逻辑封装在类的内部。对外除了提供的public 方法,不对外泄露任何信息。
4、迪米特法则还有个更简单的定义:只与直接的朋友通信。
5、直接的朋友:每个对象都会与其他对象有耦合关系,只要两个对象之间有耦合关系,就说这两个对象之间是朋友关系。耦合的方式很多,依赖,关联,组合,聚合等。其中,称出现成员变量,方法参数,方法返回值中的类为直接的朋友,而出现在局部变量中的类不是直接的朋友。也就是说,陌生的类最好不要以局部变量的形式出现在类的内部。
2.8.2 应用实例
有一个学校,下属有各个学院和总部,现要求打印出学校总部员工 ID 和学院员工的 id。编程实现上面的功能,看代码演示:
实例实现
package com.atguigu.principle.demeter; import java.util.ArrayList; import java.util.List;
//客户端
public class Demeter1 {public static void main(String[] args) { //创建了一个 SchoolManager 对象 SchoolManager schoolManager = new SchoolManager(); //输出学院的员工id 和 学校总部的员工信息 schoolManager.printAllEmployee(new CollegeManager()); }
}
//学校总部员工类
class Employee {private String id; public void setId(String id) { this.id = id; } public String getId() { return id; }
}
//学院的员工类
class CollegeEmployee {private String id; public void setId(String id) { this.id = id; } public String getId() { return id; }
}
//管理学院员工的管理类
class CollegeManager {//返回学院的所有员工 public List<CollegeEmployee> getAllEmployee() { List<CollegeEmployee> list = new ArrayList<CollegeEmployee>(); for (int i = 0; i < 10; i++) { //这里我们增加了10个员工到 list CollegeEmployee emp = new CollegeEmployee(); emp.setId("学院员工id= " + i); list.add(emp); } return list; }
}
//学校管理类
//分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
//CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则
class SchoolManager {//返回学校总部的员工 public List<Employee> getAllEmployee() { List<Employee> list = new ArrayList<Employee>(); for (int i = 0; i < 5; i++) { //这里我们增加了5个员工到 list Employee emp = new Employee(); emp.setId("学校总部员工id= " + i); list.add(emp); } return list; } //该方法完成输出学校总部和学院员工信息(id) void printAllEmployee(CollegeManager sub) { //分析问题 //1. 这里的 CollegeEmployee 不是 SchoolManager的直接朋友 //2. CollegeEmployee 是以局部变量方式出现在 SchoolManager //3. 违反了 迪米特法则 //获取到学院员工 List<CollegeEmployee> list1 = sub.getAllEmployee(); System.out.println("------------学院员工------------"); for (CollegeEmployee e : list1) { System.out.println(e.getId()); } //获取到学校总部员工 List<Employee> list2 = this.getAllEmployee(); System.out.println("------------学校总部员工------------"); for (Employee e : list2) { System.out.println(e.getId()); } }
}
2.8.3 应用实例改进
1、前面设计的问题在于 SchoolManager 中,CollegeEmployee 类并不是 SchoolManager 类的直接朋友 (分析)
2、按照迪米特法则,应该避免类中出现这样非直接朋友关系的耦合。
3、对代码按照迪米特法则进行改进。
实例改进代码
package com.atguigu.principle.demeter.improve;
import java.util.ArrayList;
import java.util.List;
//客户端
public class Demeter1 {
public static void main(String[] args) {
System.out.println("~~~使用迪米特法则的改进~~~");
//创建了一个 SchoolManager 对象
SchoolManager schoolManager = new SchoolManager();
//输出学院的员工id 和 学校总部的员工信息
schoolManager.printAllEmployee(new CollegeManager());
}
}
//学校总部员工类
class Employee {
private String id;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
}
//学院的员工类
class CollegeEmployee {
private String id;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
}
//管理学院员工的管理类
class CollegeManager {
//返回学院的所有员工
public List<CollegeEmployee> getAllEmployee() {
List<CollegeEmployee> list = new ArrayList<CollegeEmployee>();
for (int i = 0; i < 10; i++) { //这里我们增加了10个员工到 list
CollegeEmployee emp = new CollegeEmployee();
emp.setId("学院员工id= " + i);
list.add(emp);
}
return list;
}
//输出学院员工的信息
public void printEmployee() {
//获取到学院员工
List<CollegeEmployee> list1 = getAllEmployee();
System.out.println("------------学院员工------------");
for (CollegeEmployee e : list1) {
System.out.println(e.getId());
}
}
}
//学校管理类
//分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
//CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则
class SchoolManager {
//返回学校总部的员工
public List<Employee> getAllEmployee() {
List<Employee> list = new ArrayList<Employee>();
for (int i = 0; i < 5; i++) { //这里我们增加了5个员工到 list
Employee emp = new Employee();
emp.setId("学校总部员工id= " + i);
list.add(emp);
}
return list;
}
//该方法完成输出学校总部和学院员工信息(id)
void printAllEmployee(CollegeManager sub) {
//分析问题
//1. 将输出学院的员工方法,封装到CollegeManager
sub.printEmployee();
//获取到学校总部员工
List<Employee> list2 = this.getAllEmployee();
System.out.println("------------学校总部员工------------");
for (Employee e : list2) {
System.out.println(e.getId());
}
}
}
2.8.4 迪米特法则注意事项和细节
1、迪米特法则的核心是降低类之间的耦合。
2、但是注意:由于每个类都减少了不必要的依赖,因此迪米特法则只是要求降低类间(对象间)耦合关系, 并不是要求完全没有依赖关系。
2.9 合成复用原则(Composite Reuse Principle)
原则是尽量使用合成/聚合的方式,而不是使用继承。
2.10 设计原则核心思想
1、找出应用中可能需要变化之处,把它们独立出来,不要和那些不需要变化的代码混在一起。
2、针对接口编程,而不是针对实现编程。
3、为了交互对象之间的松耦合设计而努力。
资料来源于 哔哩哔哩 尚硅谷 韩顺平老师 Java设计模式