软件设计模式(归纳总结)
一、定义
软件设计模式(Design pattern),又称设计模式,是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。使用设计模式是为了可重用代码、让代码更容易被他人理解、保证代码可靠性、程序的重用性。
二、基本要素
模式名称、问题、目的、解决方案、效果、实例代码和相关设计模式。
三、优点
设计模式融合了众多专家的经验,并以一种标准的形式供广大开发人员所用,它提供了一套通用的设计词汇和一种通用的语言以方便开发人员之间沟通和交流,使得设计方案更加通俗易懂。对于使用不同编程语言的开发和设计人员可以通过设计模式来交流系统设计方案,每一个模式都对应一个标准的解决方案,设计模式可以降低开发人员理解系统的复杂度。
设计模式使人们可以更加简单方便地复用成功的设计和体系结构,将已证实的技术表述成设计模式也会使新系统开发者更加容易理解其设计思路。设计模式使得重用成功的设计更加容易,并避免那些导致不可重用的设计方案。
设计模式使得设计方案更加灵活,且易于修改。
设计模式的使用将提高软件系统的开发效率和软件质量,且在一定程度上节约设计成本。
设计模式有助于初学者更深入地理解面向对象思想,一方面可以帮助初学者更加方便地阅读和学习现有类库与其他系统中的源代码,另一方面还可以提高软件的设计水平和代码质量。
四、六大原则
1、开闭原则(Open Close Principle)
开闭原则的意思是:对扩展开放,对修改关闭。在程序需要进行拓展的时候,不能去修改原有的代码,实现一个热插拔的效果。简言之,是为了使程序的扩展性好,易于维护和升级。想要达到这样的效果,我们需要使用接口和抽象类,后面的具体设计中我们会提到这点。
2、里氏代换原则(Liskov Substitution Principle)
里氏代换原则是面向对象设计的基本原则之一。 里氏代换原则中说,任何基类可以出现的地方,子类一定可以出现。LSP 是继承复用的基石,只有当派生类可以替换掉基类,且软件单位的功能不受到影响时,基类才能真正被复用,而派生类也能够在基类的基础上增加新的行为。里氏代换原则是对开闭原则的补充。实现开闭原则的关键步骤就是抽象化,而基类与子类的继承关系就是抽象化的具体实现,所以里氏代换原则是对实现抽象化的具体步骤的规范。
3、依赖倒转原则(Dependence Inversion Principle)
这个原则是开闭原则的基础,具体内容:针对接口编程,依赖于抽象而不依赖于具体。
4、接口隔离原则(Interface Segregation Principle)
这个原则的意思是:使用多个隔离的接口,比使用单个接口要好。它还有另外一个意思是:降低类之间的耦合度。由此可见,其实设计模式就是从大型软件架构出发、便于升级和维护的软件设计思想,它强调降低依赖,降低耦合。
5、迪米特法则,又称最少知道原则(Demeter Principle)
最少知道原则是指:一个实体应当尽量少地与其他实体之间发生相互作用,使得系统功能模块相对独立。
6、合成复用原则(Composite Reuse Principle)
合成复用原则是指:尽量使用合成/聚合的方式,而不是使用继承。
五、分类
(一)根据范围
即模式主要是用于处理类之间关系还是处理对象之间的关系,可分为类模式和对象模式两种: 类模式处理类和子类之间的关系,这些关系通过继承建立,在编译时刻就被确定下来,是属于静态的。 对象模式处理对象间的关系,这些关系在运行时刻变化,更具动态性。
(二)根据其目的(模式是用来做什么的)
根据设计模式的参考书 Design Patterns - Elements of Reusable Object-Oriented Software(中文译名:设计模式 - 可复用的面向对象软件元素) 中所提到的,一共有 23 种设计模式。这些模式可以分为三大类:创建型模式(Creational Patterns)、结构型模式(Structural Patterns)、行为型模式(Behavioral Patterns)。其中创建型模式主要用于创建对象。 结构型模式主要用于处理类或对象的组合。 行为型模式主要用于描述对类或对象怎样交互和怎样分配职责。
GoF设计模式简介
1.创建型模式
(1)工厂方法(Factory Method)模式:定义一个用于创建产品的接口,由子类决定生产什么产品。
工厂方法模式(Factory Method Pattern)又称为工厂模式,也叫虚拟构造器(Virtual Constructor)模式或者多态工厂(Polymorphic Factory)模式,它属于类创建型模式。工厂方法模式之所以又被称为多态工厂模式,是因为所有的具体工厂类都具有同一抽象父类。在工厂方法模式中,工厂父类负责定义创建产品对象的公共接口,而工厂子类则负责生成具体的产品对象,这样做的目的是将产品类的实例化操作延迟到工厂子类中完成,即通过工厂子类来确定究竟应该实例化哪一个具体产品类。在工厂方法模式中,核心的工厂类不再负责所有产品的创建,而是将具体创建工作交给子类去做。
工厂方法模式包含如下角色:
Product:抽象产品
ConcreteProduct:具体产品
Factory:抽象工厂
ConcreteFactory:具体工厂
(2)抽象工厂(AbstractFactory)模式:提供一个创建产品族的接口,其每个子类可以生产一系列相关的产品。
产品等级结构:产品等级结构即产品的继承结构。
产品族:在抽象工厂模式中,产品族是指由同一个工厂生产的,位于不同产品等级结构中的一组产品。
当系统所提供的工厂所需生产的具体产品并不是一个简单的对象,而是多个位于不同产品等级结构中属于不同类型的具体产品时需要使用抽象工厂模式。
抽象工厂模式是所有形式的工厂模式中最为抽象和最具一般性的一种形态。
抽象工厂模式与工厂方法模式最大的区别在于,工厂方法模式针对的是一个产品等级结构,而抽象工厂模式则需要面对多个产品等级结构,一个工厂等级结构可以负责多个不同产品等级结构中的产品对象的创建 。
当一个工厂等级结构可以创建出分属于不同产品等级结构的一个产品族中的所有对象时,抽象工厂模式比工厂方法模式更为简单、有效率。
抽象工厂模式(Abstract Factory Pattern):提供一个创建一系列相关或相互依赖对象的接口,而无须指定它们具体的类。抽象工厂模式又称为Kit模式。
抽象工厂模式包含如下角色:
AbstractFactory:抽象工厂
ConcreteFactory:具体工厂
AbstractProduct:抽象产品
Product:具体产品
抽象工厂模式隔离了具体类的生成,使得客户并不需要知道什么被创建。
应用抽象工厂模式可以实现高内聚低耦合的设计目的。
在以下情况下可以使用抽象工厂模式:
一个系统不应当依赖于产品类实例如何被创建、组合和表达的细节,这对于所有类型的工厂模式都是重要的。
系统中有多于一个的产品族,而每次只使用其中某一产品族。
属于同一个产品族的产品将在一起使用,这一约束必须在系统的设计中体现出来。
系统提供一个产品类的库,所有的产品以同样的接口出现,从而使客户端不依赖于具体实现。
(3)建造者(Builder)模式:将一个复杂对象分解成多个相对简单的部分,然后根据不同需要分别创建它们,最后构建成该复杂对象。
(4)原型(Prototype)模式:将一个对象作为原型,通过对其进行复制而克隆出多个和原型类似的新实例。
(5)单例(Singleton)模式:某个类只能生成一个实例,该类提供了一个全局访问点供外部获取该实例,其拓展是有限多例模式。
结构型模式
1. 代理(Proxy)模式:为某对象提供一种代理以控制对该对象的访问。即客户端通过代理间接地访问该对象,从而限制、增强或修改该对象的一些特性。
2. 适配器(Adapter)模式:将一个类的接口转换成客户希望的另外一个接口,使得原本由于接口不兼容而不能一起工作的那些类能一起工作。
3. 桥接(Bridge)模式:将抽象与实现分离,使它们可以独立变化。它是用组合关系代替继承关系来实现,从而降低了抽象和实现这两个可变维度的耦合度。
4. 装饰(Decorator)模式:动态的给对象增加一些职责,即增加其额外的功能。
5. 外观(Facade)模式:为多个复杂的子系统提供一个一致的接口,使这些子系统更加容易被访问。
6. 享元(Flyweight)模式:运用共享技术来有效地支持大量细粒度对象的复用。
7. 组合(Composite)模式:将对象组合成树状层次结构,使用户对单个对象和组合对象具有一致的访问性。
行为型模式
1. 模板方法(TemplateMethod)模式:定义一个操作中的算法骨架,而将算法的一些步骤延迟到子类中,使得子类可以不改变该算法结构的情况下重定义该算法的某些特定步骤。
2. 策略(Strategy)模式:定义了一系列算法,并将每个算法封装起来,使它们可以相互替换,且算法的改变不会影响使用算法的客户。
3. 命令(Command)模式:将一个请求封装为一个对象,使发出请求的责任和执行请求的责任分割开。
4. 职责链(Chain of Responsibility)模式:把请求从链中的一个对象传到下一个对象,直到请求被响应为止。通过这种方式去除对象之间的耦合。
5. 状态(State)模式:允许一个对象在其内部状态发生改变时改变其行为能力。
6. 观察者(Observer)模式:多个对象间存在一对多关系,当一个对象发生改变时,把这种改变通知给其他多个对象,从而影响其他对象的行为。
7. 中介者(Mediator)模式:定义一个中介对象来简化原有对象之间的交互关系,降低系统中对象间的耦合度,使原有对象之间不必相互了解。
8. 迭代器(Iterator)模式:提供一种方法来顺序访问聚合对象中的一系列数据,而不暴露聚合对象的内部表示。
9. 访问者(Visitor)模式:在不改变集合元素的前提下,为一个集合中的每个元素提供多种访问方式,即每个元素有多个访问者对象访问。
10. 备忘录(Memento)模式:在不破坏封装性的前提下,获取并保存一个对象的内部状态,以便以后恢复它。
11. 解释器(Interpreter)模式:提供如何定义语言的文法,以及对语言句子的解释方法,即解释器。