Contest20140709 testA 树型DP
-
testA
输入文件: testA.in 输出文件testA.out 时限5000ms
问题描述:
一棵树N个节点,每条边有一个距W,现在定义SUM为所有dist(X,Y)的和1<=X<Y<=N , dist(X,Y)表示X到Y在树上的距离。现在给你一个机会把任意一条边删掉,再把这条边连接其他两个节点使得SUM最小。求出SUM的最小值
输入描述:
第一行N。
第二行到第N行每行三个数X,Y,W。表示X到Y有一条长度为W的边。
。
输出描述:
一行一个数表示答案。
数据范围N<=5000 , W<=10^6
样例输入1:
6
1
2 1
2 3 1
3 4 1
4 5 1
5 6 1
样例输出1:
29
样例输入2:
3
1
2 2
1 3 4
样例输出2:
12
就因为这道题卡了我很久啊。总之就是维护一堆乱七八糟的值。
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; #define INF 0x3f3f3f3f #define MAXN 10000 #define MAXE MAXN*2 #define MAXV MAXN #ifdef WIN32 #define LL "%I64d" #else #define LL "%lld" #endif typedef long long qword; int n,m; struct edge { int x,y; }el[MAXE]; struct Edge { int np,val; int id; Edge *next; }E[MAXE],*V[MAXV]; int root,tope=-1; void addedge(int x,int y,int z,int id) { E[++tope].np=y; E[tope].next=V[x]; E[tope].val=z; E[tope].id=id; V[x]=&E[tope]; } int fa[MAXN]; int dis_fa[MAXN]; int q[MAXN]; int ope=-1,clo=0; int dp1[MAXN];//size of subtree qword dp2[MAXN];//the total distance from each child to the root in subtree qword dp3[MAXN];//the total distance from each node outside the subtree to root qword dp4[MAXN];//the total distance of each pair void bfs(int root) { ope=-1,clo=0; Edge *ne; q[0]=root; fa[root]=0; int now; while (ope<clo) { now=q[++ope]; for (ne=V[now];ne;ne=ne->next) { if (ne->np==fa[now])continue; fa[ne->np]=now; dis_fa[ne->np]=ne->val; q[++clo]=ne->np; } } } qword work1() { int i,j; Edge *ne; int now; for (i=clo;i>=0;i--) { now=q[i]; dp1[now]=1; for (ne=V[now];ne;ne=ne->next) { if (ne->np==fa[now])continue; dp1[now]+=dp1[ne->np]; } } for (i=clo;i>=0;i--) { now=q[i]; dp2[now]=0; for (ne=V[now];ne;ne=ne->next) { if (ne->np==fa[now])continue; dp2[now]+=dp2[ne->np]+dp1[ne->np]*ne->val; } } dp3[q[0]]=0; for (i=1;i<=clo;i++) { now=q[i]; // dp3[now]=dp3[fa[now]]+dp2[fa[now]]-dp2[now]+dis_fa[now]*(-dp1[now]+dp1[fa[now]]-dp1[now]); dp3[now]=dp3[fa[now]]+dp2[fa[now]]-dp2[now]-dis_fa[now]*dp1[now]+dis_fa[now]*(dp1[root]-dp1[now]); } qword ret=0; for (i=1;i<=n;i++) { ret+=(qword)dis_fa[i]*dp1[i]*(dp1[root]-dp1[i]); } return ret; } bool edge_st[MAXN]; int color[MAXN]; qword dist[MAXN]; void dfs2(int now,int fat,int col,qword d) { color[now]=col; dist[now]=d; Edge *ne; for (ne=V[now];ne;ne=ne->next) { if (ne->np==fat)continue; dfs2(ne->np,now,col,d+ne->val); } } int main() { freopen("testA.in","r",stdin); //freopen("testA.out","w",stdout); int i,j,k; int x,y,z; scanf("%d",&n); for (i=1;i<n;i++) { scanf("%d%d%d",&x,&y,&z); addedge(x,y,z,i-1); addedge(y,x,z,i-1); el[i-1].x=x; el[i-1].y=y; } m=n-1; root=1; bfs(root); qword sum_old=work1(); //cout<<"SUM_OLD:"<<sum_old<<endl; qword dis1,dis2; qword dis_old1,dis_old2; qword mus1,mus2; int totm1,totm2; qword best=0; for (i=0;i<m;i++) { edge_st[i]=1; if (fa[el[i].x]==el[i].y)swap(el[i].x,el[i].y); dfs2(el[i].x,el[i].y,1,0);//1:outside dfs2(el[i].y,el[i].x,2,0);//2:inside dis_old1=dp3[el[i].y]-dis_fa[el[i].y]*(dp1[root]-dp1[el[i].y]); dis_old2=dp2[el[i].y]; mus1=dp2[el[i].y]+dp1[el[i].y]*dis_fa[el[i].y]; mus2=dp3[el[i].y]; totm1=dp1[el[i].y]; totm2=dp1[root]-dp1[el[i].y]; dis1=dis2=INF; for (j=1;j<=n;j++) { if (color[j]==2) { dis2=min(dis2,dp2[j]+dp3[j]-mus2-totm2*dist[j]); }else { dis1=min(dis1,dp2[j]+dp3[j]-mus1-totm1*dist[j]); } } best=max(best,(dis_old1-dis1)*totm1+(dis_old2-dis2)*totm2); } printf(LL "\n",sum_old-best); return 0; }
by mhy12345(http://www.cnblogs.com/mhy12345/) 未经允许请勿转载
本博客已停用,新博客地址:http://mhy12345.xyz